学年

教科

質問の種類

数学 高校生

解答とは違う解き方で解きましたが、(2)の答えが合いません。×2が足りないそうですが、どこで間違えたのでしょうか。

92項間漸化式/an+1=pan+f(n) - 次の式で定められる数列の一般項 4 を求めよ. (1) a=1, n+1=20n+n (n=1,2,3, ...) (2) a1=4,n+1=40-2"+1 (n=1, 2, 3, ...) (弘前大・理工-後) (信州大工) 型の漸化式を解く 2項間漸化式の解き方 an+1=pan+f(n) (p=0.1:f(n)はnの式) には、変形して+1+g(n+1)=plan+g(n)}となるようなg(n) を見つけて, {an+g(n)}が等比 数列になることを用いればよい (i) f(n)がnの多項式の場合,g(n)もf(n)と次数が等しいnの多項式である。g(n)の係数を 未知数とおいて,☆より係数を求めればよい。 特にf (n) が定数の場合は前頁で扱った. (ii) f(n)=Aq" (g≠p, A は定数) の場合,g(n)=Bg”として, が成り立つように定数Bを定め an+1 an ればよい.また,an+1= pan+Ag" の両辺を"+1で割って, +A p" +1 (2)². ここで, an A bn とおいて, bm+1=bn+ として階差型の解き方 (前頁)に持ち込む手でもよい。 P 解答 (1) an+1+A(n+1)+B=2(an+An+B) を満たす A, B を求める. an+1=2an+An+B-A と条件式を比べて, A = 1, B-A=0 :.B=1 an+1+(n+1)+1=2(a+n+1)より,{an+n+1}は公比2の等比数列. よって, an+n+1=2"-1 (Q1+1+1)=3·2"-1 .. an=3.2"-1-n-1 左辺はA(n+1) になることに注 意. (2) +1=44-2n+1 を 4n+1で割って an+1 an 1+1 4n+1 an 4" 2 \+1 == 4" bm=211 とおくと, b1=41=1,n+1=bn-(12)となるので2のとき 【 (2) の別アプローチ】 f(n) が Ag” の形の場合は、両辺 を Q"+1 で割ると, 典型的な2項 間漸化式に帰着されることに着 目. 漸化式を 2 +1 で割って, 1 \n-1 -1 bm=b1+2(bk+1-bh)=1- k=1 -1- 12/12(1/2)-1/12+(1/1) n-3 1+1 2 an+1 an ・=2. =1- -1 2"+1 2" 11-113 an 2" Cn= とおくと, C+1=2cm-1. (n=1のときもこれでよい) これから解く. よって,=40=4 =4*{/12+(1/2)"} =2.4"-1+2" 【別解】 (2) an+1+A.2"+1=4(an+A2") を満たす A を求める. an+1=40+4A2"-A2n+1=40+A2"+1 と条件式を比べて, A=1. an+1-2n+1=4(an-2")より, {4-2"}は公比4の等比数列. よって, an-2"=4"-1(α1-21)=2.4-1 . 9 演習題(解答は p.75) 次の式で定められる数列の一般項4 を求めよ. an=2.4"-1+2" (1) 41=2,4+1=3an+2n2-2n-1 (n≧1) (2) α=1,n+1-20万=n.2n+1 (n≧1) (岐阜大) (日本獣医畜産大) (1), (3) an+1+f(n+1) =k(a+f(n)) となる (日)を探す

解決済み 回答数: 1
数学 高校生

三項間漸化式 (2)で解説には1個しか式を書いてないんですけど、左の(I)には式を2個作って連立してるんですけど式は1個でもできるんですか?

1293項間の漸化式 2,=4,an+2=-a1+2an (n≧1) で表される数列{a, がある。 (1) (2) an+2-αan+1=β(an+1-αan) をみたす 2数α, β を求めよ. an を求めよ. 精講 an+2=pan+1+gan の型の漸化式の解き方は 2次方程式 f=pt+q の解をα,βとして,次の2つの場合があり ます。 (I) α≠β のとき an+2= (a+β)an+1-aban より an+2-dan+1=β(an+1-aan) an+2-βax+1=α(an+1-Ban) anをと 2次方程式を解の、とする anをしとして 700 ・① ......② ①より, 数列{an+1-Qan}は,初項 a2-way, 公比βの等比数列を表すので、 an+1-dan=βn-1 (azaar) ...... ①' 同様に,②より, an+1-Ban=α"-1 (α-βas) ...... ②' (β-α)an=β"-1 (a2-aa1)-α"-1 (az-Bar) (1) an+2=(a+β)an+1-aBan 解 答 与えられた漸化式と係数を比較して、 α+β=-1, aβ=-2 .. (a, B)=(1, 2), (-2, 1) (2) (α,β)=(1, 2) として an+2-an+1=-2(an+1-an) an+1-an=bn とおくと bn+1=-26 また, b=a2-a=2 n≧2 のとき, n-1 an=a1+2(-2)-1 =2+2・ k=1 :.bn=2(-2)^-1 1-(-2) ----(4-(-2)^-') 1-(-2) これは, n=1のときも含む. (別解) (α,β)(2,1)として an+2+2an+1=an+1 +2an [123] an+1+2an=a2+2a1 よって, an+1=-2an+8 2 ---2(a-3). α-3--3 a [124] 199 ①-②' より, 8 : an+1 β”-1 (a2-aa)-α"-1 (a2-Bas) ... an= したがって, an-0323-172(-2)*- 8 an= (4-(-2)-1) B-a 出 注 実際には α=1(またはβ=1) の場合の出題が多く, その場合は階差数 列の性質を利用します。 (本間がそうです) ポイント (II) α = β のとき an+2-Qan+1=α(an+1-aan) : an+1-aan=α"-1 (az-dai) ......③ an+2=pan+1+gan 型は, 2次方程式f=pt+g の 解α,βを利用して、 等比数列に変形し2項間の漸 式にもちこむ An+1 an+1 つまり、数列{an+1-αan} は, 初項 α2da, 公比αの等比数列. ③の両辺をα+1でわって an a2-aa1 an a² n-1 n≧2 のとき,k+1 ak a2day k+1 k=1\a" k=1 an よって, an a=(n-1).az-aa 演習問題 129 a=1, a2=2, an+2=3a+1-24 で表される数列{an}があ 7月) をみたす2 数 α, βを求めよ

解決済み 回答数: 1
数学 高校生

私の求め方ではダメなのでしょうか?

244 サクシード数学B 249 an+1=6am-3 +1 の両辺を3"+1で割ると an+1 a. =2• -1-140 であるか 3 +1 an 3" とおくと bn+1=2b-19 これを変形して 6m+1-1=2(0,-1)=26 また 6₁-1=1-1=-1=2 3 n 3”は ゆえに 1 an=1であるから (2)>0であるから,漸化式より az0 よって30 列で6+1=44-1 b„=4"-1 1 4"-1 列で bm-1=2.2"-1 3 目の歌である よって、 数列{b-1}は初項2,公比2の等比数 分 として、次の 4+1 よって、漸化式の両辺の逆数をとると an+5 同様にして, すべての自然数nについて > b=2である 立つ。 よって ay=nbm で an ゆえに TW an+1 25an b=2+1 245 =3b" であるから すなわち11 であるから + an+1 an5 a,=3"(2"+1)=6"+3" an+1 an 別解an+1=6a-31 の両辺を6+1で割ると45 1\n+1 b=- とおくと an 立 bn+1=bn+- 1 252 a=S ゆえに Qs+1=S+ Dan+1 よって また b₁=- =1 6"+16" (21) 1 a1 これを変形 Cn= とおくと OUTSIDE/1+1 Cn+1=C- 12 3 で1b,=1+(n-1)・1/2= よって,数列 {bm } は初項 1, 公差 等差数列 (4)。 また n+4 ゆえに、姜 5 an= 3 であるから an=- 5 よって, {cm} は初項が 階差数列の第n項が n+4 比数列で 2 1+1 HOUSE (S+3) V 2 の数列であるから, n2のとき 8.8=SF 251 (1) b=na とおくと, 漸化式から bn+1=bn したがって 40 3 1n_1/1\ 48.8=23 または Job b=1a=15 よって b=1 (n=1, 2,......) 253 正方 の長さを 「目)のである。 1\n-1) 1- ゆえに 312 nan=1 したがって,=1 のように 2 n D.をとる 2 2 (88) 1 2 D="D (2) nan+1=(n+1)+1の両辺をn (n+1)で割 CD= an+1) an 15 (I-1-8)8 ると D.C 1\" +1= n+1 n n(n+1) =1+ ① AABC 2 3 an n 1 bn=” とおくと 236+1=6+ n(n+1) A であるから,①はn=1のときも成り立 すなわち また • b₁ = b1=q=2 よって +391 つ。ゆえに cm=1+(2) n 2021-20 an=6cmであるから SE-8 項が 24461+(2)}= an=6"1+ 1 250 (1) とおくと BJJ (3) 1 n(n+1) であるから,n≧2のとき n-1 1 8-8=0 bm=2+2 =2+ k(k+1) k=1 bn+1=4b+3 an (-1)+(-1)+z= これを変形して bm+1+1=4(b+1) + + よって, 数列{bm} は初項が2, 階差数列の第 n も成り立つ。 また、4 ゆえに、 列である したが -1/1 1 (+1 3 また 30円 b1+1= +1=3+1=4 Jcb a1 よって, 数列{bm+1} は初項4, 公比4の等比数 =2+(1-1)=3-10

解決済み 回答数: 2
数学 高校生

この問題の最後の√5分の1がどうして出てきたのかわからないです解説お願いします

段(nは自然数) ある階段を1歩で1段または2段上がるとき、この階段の上 22 がり方の総数をan とする。 このとき, 数列{an}の一般項を求めよ。 指針 数列{an} についての漸化式を作り,そこから一般項を求める方針で行く。 段に達する 1歩で上がれるのは1段または2段であるから, n≧3のときn 直前の 作を考えると [1] 2段手前 [(n-2) 段] から2歩上がりで到達する方法 [2] 1段手前[(n-1) 段] から1歩上がりで到達する方法 の2つの方法がある。このように考えて、まず隣接3項間の漸化式を導く。 ->> 漸化式から一般項を求める要領は, p.476 基本例題 41 と同様であるが、ここでは 特性方程式の解α, βが無理数を含む複雑な式となってしまう。 計算をらくに扱う ためには,文字α, βのままできるだけ進めて, 最後に値に直すとよい。 a=1, az=2である。 解答 n ≧3のとき, n段の階段を上がる方法には,次の [1], [2] の 場合がある。 [1] 最後が1段上がりのとき、 場合の数は (n-1) 段目まで の上がり方の総数と等しく 通り [2] 最後が2段上がりのとき, 場合の数は (n-2) 段目まで の上がり方の総数と等しく an-2通り [1] 最後に1段上がる (n-1) 段 a= ②から ③から ④-⑤ から 1-√√5 2 n段 ここまでαn-1 通り COSPREE よって an=an−1+an-2(n≧3) (*) この漸化式は, an+2=an+1+an (n≧1) ①と同値である。 x=x+1の2つの解をα, β(a <β) とすると, 解と係数の 関係から a+ß=1, aß=-1g. (I-s)=(I—s) ①から an+2-(a+β)an+1+aban=0 よって 9 [2] 最後に2段上がる an+2-dan+1=β(an+1-aan), a22da=2-a an+2-Ban+1=a(an+1-Ban), az-Ba=2-B B=- ...... (n-2) ...... an+1-dan=(2-α)βn-1 an+1-Ban (2-B) an-1 (B-a)an=(2-α)βn-1-(2-β)α7-1 1+√5 2 であるから 0 β-α=√5 また, α+β=1, α2=a+1, β2=β+1 であるから 2-α=2-(1-β)=β+1=β^ 同様にして 2-β=2 よって, ⑥ から \n+1 - // ((¹+2√/5 ) **¹-(¹-√/5 )"+") an= 1-√√√5 +1 ....... (4) ③3 n=2 (n-1) 段 n段 ここまでαn-2通り 和の法則 (数学A) (*) でn→n+2 特性方程式 x2-x-1=0の解は -1+√5 2 a=1, a=2 x= arn-1 an+1 を消去。 α,βを値に直す。 2-α, 2-βについて は,αβ の値を直接 代入してもよいが,こ こでは計算を工夫し ている。

解決済み 回答数: 1