学年

教科

質問の種類

数学 高校生

青チャ数Bの問題です 右の写真の私の83(1)の解答について、どこからが間違っていますか?やはり最後に90°-θをしなければならないのですか?しかし私には90°-θをする理由がわかりません。 加えて解答の書き方に不備がありましたら、そちらもご教示ください 字が汚くすみ... 続きを読む

演習 例題 83 直線と平面のなす角, 直線に垂直な平面 x-2_y+1 (1) 直線l: = 4 -1 =z-3と平面α:x-4y+z=0 のなす角を求めよ。 (2)点A(1,1,0)を通り,直線x6=y-2=- 1-z に垂直な平面の方程式を 2 求めよ。 た 演習 78,80 指針▷(1)直線lと平面αのなす角は,lのα上への正射影(*)を l' とすると, 右の図のようにll のなす角 0 である。 したがって, 平面αの法線ベクトルを直線lの方向ベ クトルをdとdのなす角を とすると, 0=90°-01 または 0=01-90°である。 ! (2)直線に垂直な平面 → 直線の方向ベクトルが平面の法線 ベクトルである。 解答 (1) 直線lの方向ベクトルをd=(4,1,1) とし, 平面 α の法線ベクトルを=14,1)とする。 dとんのなす角を10° 180°) とすると d.n COS G1= dn = 4・1+(-1)・(-4)+1・1 √4°+(-1)+12√1°+(−4)'+12 1 = 20 0° 180°であるから =60° よって、直線lと平面αのなす角は 90°-60°=30° (2) 館 6 21 日 a (*) 直線l上の各点から平 面αに下ろした垂線の足 の集合を,直線lのα 上へ の正射影という。 A 4+4+1_9_1 √18 18 18 2 h z-C

回答募集中 回答数: 0
数学 高校生

この線部の式の意味がよくわからないので教えてください🙇‍♀️ 蝶々型の面積比の問題です。

216 総合演習問題 §7 図形の性質 ( 7 (12分20点) 〔1〕 太郎さんのクラスでは,数学の授業で次の問題が宿題として出された。 6円 ABの 4 形は 問題 △ABCにおいて, AB = 4, BC=2, CA =3とする。 辺 AB を 1:3 に内分する点を D, △ABCの内心をIとして, 直線 AI と辺BC の交 点をE, 直線DIと辺BCの交点をFとする。 このとき, Iは線分 DF をどのような比に分けるか。 (1) 内心についての記述として,次の①~③のうち、正しいものはア である。 ア |の解答群 ⑩ 三角形の3本の中線は1点で交わり, この点が内心である。 ① 三角形の三つの内角の二等分線は1点で交わり, この点が内心である。 三角形の3辺の垂直二等分線は1点で交わり, この点が内心である。 三角形の3頂点から対辺またはその延長に下ろした垂線は1点で交わ り,この点が内心である。 (2) 太郎さんは宿題について考え, 次のように解答した。 イ AI I 点Iは内心であるから, BE= であり, である。こ ウ EI オ のとき, BF 「カキ] EF FI ケ であるから, である。 DI ク コサ よって, 点Iは線分 DF を コサ: ケ の比に内分する。 (3)△ADIと△EFIの面積比は AEFI 「シス] = AADI センタ である。 (次ページに続く。) 3)

回答募集中 回答数: 0
数学 高校生

1と2でcが異なるのがよくわかりません。 どうやって考えればいいんですか?

○○ 基本 71 日本例題 を求めよ。 の共有点と連立1次方程式の解 立方程式 ax+3y-1=0, 3x-2y+c=0 が,次のようになるための条件 ただ1組の解をもつ 00000 (2) 解をもたない (3) 無数の解をもつ p.121 基本事項 GHART & SOLUTION 2直線が 川 1点で交わる 2直線A, B の共有点の座標 ⇔ (共有点は1つ) 連立方程式が 連立方程式 A, B の解 125 が一致 よい。 [2] 平行で一致しない (共有点はない) ⇔ ⇔ [3] 一致する(共有点は直線上の点全体) 答 ax+3y-1=0 から 3x-2y+c=0 から y=-- a 1 x+ 3 3 y=1/2x+1/2 1組の解をもつ 解をもたない 無数の解をもつ (1) 連立方程式 ① ② がただ1組の解をもつための条件は, 2直線 ①② が1点で交わる, すなわち平行でないことで a 3 が -1 ある。 0 よって 3 2 9 ゆえに a- 2 cは任意の実数 (2)連立方程式 ①,②が解をもたないための条件は, 2直線 ① ②が平行で一致しないことである。 inf 2直線 ax+by+c=0, azx+bzy+cz=0 が | 平行であるための条件は ab-ab=0 3章 11 である(p.120基本事項3) から (1) は b2-azb≠0 より求めてもよい。 なお, a2=0,620, 20 のとき 2直線が 一致するための条件は a_bicy a2 b₂ C2 直線 である。 (3)は、この式から 求めてもよい。 0 よって a = 3 1 C ・キ 3 2'3 2 9 ゆえに a= 2 3

回答募集中 回答数: 0