学年

教科

質問の種類

数学 高校生

75.1 証明の記述に問題ないですか?

416 00000 基本例題 75 三角形の面積比 (1) ABCの辺AB, AC 上に、それぞれ頂点と異なる点D,Eをとるとき、 △ADE AD AE が成り立つことを証明せよ。 △ABC AB AC (2) △ABCの辺BC, CA, AB を 3:2に内分する点をそれぞれD,E,Fとす る。 △ABCと△DEF の面積の比を求めよ。 基本69 指針▷三角形の面積比は, p.410で考えたように等しいもの(高さか底辺)に注目する。 (1) まず, 補助線 CD を引く。 △ADEと△ADC では何が等しいか。 三角形の面積比 等高なら底辺の比, 等底なら高さの比 (2)(1) を利用。△DEF は, △ABCから3つの三角形を除いたものと考える。 2147 解答 (1)2点CDを結ぶ。 △ADEと△ADC は, 底辺をそれぞれ線分 AE, 線分 AC と AADE AE みると,高さが等しいから ① AADC AC △ADCと△ABC は, 底辺をそれぞれ線分 AD, 線分AB と 101=M8 みると,高さが等しいから (2) $080+ MAS = 3 ① ② の辺々を掛けると したがって (21)により AADE AADC △ADC △ABC △ADC AD AABC AB △ADE AD AE △ABC AB AC AAFE AF AE △ABC AB AC ここで 両辺を △ABC で割ると ADEF =1- △ABC . ABDF BD BF △ABC BC BA =1- AEAD 6 6 25 ACAD(*8+"CA)S="MA 37/557/5057/5 32 2|52|52|5 32 AAFE △ABC △ABC 25 25 ゆえに △ABC △DEF = 25:7 ACED CE CD △ABC CA CB ADEF=AABC-AAFE-ABDF-ACED 6 7 25 IP (A))"A+HA 6+$ 25 = 6 EST+CAA-AL/ 25 ABDF ACED 6 25 B D B 2 3 3 E T(98+9A)8=5A+EA D20 AABCHA MAJUSCUL △ABCの辺BC を 2:3に内分する点をDとし、 辺CA を 1:4に内分する点を 練習 2 75 E とする。 また, 辺ABの中点をFとする。 △DEF の面積が14のとき, の面積を求めよ。 (180+0A8 A+S p.418 EX47 △ABC まと 三角 1 B [別ア: ローラ こ (三角 (1) 証 BOF 17 & 証明

回答募集中 回答数: 0
数学 高校生

37(1)で例えば f についてだと、解説では f1、 f2 に分けて考えているけど実際fは同じものだから2の階乗で割る必要があると思うのですが、、、 教えて頂けると嬉しいです🙇‍♀️🙏💦

16 00000 基本例題 37 順列と確率 (2) 同じものを区別する coffee の6文字を次のように並べるとき、各場合の確率を求めよ。 (1) 横1列に並べるとき, 左端が子音でかつ母音と子音が交互に並ぶ確率 P.32 基本事項 (2) 円形に並べるとき, 母音と子音が交互に並ぶ確率 指針 ... 確率の基本 同じものでも区別して考える に従い、2個ずつある fとeをそれぞれ区別して, fs, fz, e1, ez と考える。 (1) まず, 子音を並べ、次にその間と右端に母音を並べる。 (2)「円形」に並べるから、円順列の考えを利用する。 まず, 子音を円形に並べて固 定し、次に子音と子音の間に母音を並べる。 注意 アルファベット26文字のうち, a,i,u, e, o を母音, 残り 21 文字を子音という。 2 個の f を f1,f2, 2個のe をeezとすると, 母音は 0, 解答 1, 2,子音は c, f1, f2 である。 (1) 異なる6文字を1列に並べる方法はP=6! (通り) 子音3文字を1列に並べる方法は 3P3=3! (通り) そのおのおのについて,子音と子音の間および右端に 母音3文字を並べる方法は 3P3=3! (通り) よって, 求める確率は 3!×3! 1 6! 20 (2) 異なる6文字の円順列は (6-1)!=5! (通り) 子音3文字の円順列は (3-1)! 2! (通) そのおのおのについて,子音を固定して, 子音と子音の 間に母音3文字を並べる方法は P3=3! (通り) よって、求める確率は 2!×3! 5! A.B.C ****** = 1 10 <指針」 の方針 確率では,同様に確から しいことが前提にあるた め、 同じものでも区別し て考える。 左端は子音 COL 口口口 母音 積の法則を利用。 YA (4) 固定 [] に母音を並べる。

回答募集中 回答数: 0
数学 高校生

うかる確率の問題なのですが集合の概念を使う必要があるのでしょうか?またなぜ私の解答は間違っているのでしょうか?

高の歩動の指対試こな 2 対 め ① Z ステージ3 入試実戦編 場合の数 本ITEM からは, 「法則」 の活用がメインとなります。 まずは, 「含む」とか「ある か、一見明確な表現について考えます. ここが 「含む」=「少なくとも1つある」 →補集合を利用 6/3× 桁の自然数を作 例題33 1,2,3,4,5の5種類の数字を並べて n るとき、次の問いに禁えば何があるかじ数字を繰り返し用いてもよいとす。 (1) (2) 数字 1,2をどちらも含む自然数は何個あるか. 着眼) (3) 数字 1,2,3を全て含む自然数は何個あるか. 2/16 (2)(3)×カルノ回使う必等以 (1) 含まれる数字1の個数は, 次のうちどれかです。 全体像を視 0 1,2, 3...,n 求めやすい 求めたい olan i これを見れば、問われている 「1を含む」には多くの場合があって面倒であり, 含まない」の方が考えやすいことが一目瞭然」 ここは「補集合」 を活用しましょう。 (2) (1) で得た着眼をもとに, 「包除原理」 を適用しましょう. 2つの集合A,Bが関 する問題ですから,「カルノー図」を用いて視覚化します。 (3) こちらは3つの集合 4, B, C ですから「包除原理」+「ベン図」で.ただし... 解答作られる自然数の総数は5.… (*) (右図参照)1桁目 2桁目 また,それらから作られる3つの集合||||| A: 「1を含む」, B: 「2を含む」 C: 「3を含む」 1 を考える. 2 (1) Aの補集合は A: 「1を含まない」, i.e. 「n 桁が全て 2, 3, 4, 5」. : n(A)=4". ○これと (*) より 求める個数は n(A)=5"-n(A)=5"-4". (2) 求める個数はn (A∩B) である. ○B: 「2を含まない」, i.e. 「n 桁が全て 1,3,4,5」, ANB: 「1,2を含まない」 i.e. 「n桁が全て 3, 4, 5」. .. n(A∩B)=3". ○これらと (*) より 求める個数は n(A∩B)=5"-(4"+4-3") …① =5"-2.4"+3". 91 CHIRUPA 求めたい A A カルノー図で B 3 ¥ 5 B ・求めやすい (③3) ○求める個数は(A∩BC)である。 (2)までと同様にして n(A)=n(B)=n(C)=4". n(ANB)=n(BNC)=n(CNA)=3", ANBOT: 「1,2,3を含まない」 ie. 「n 桁が全て 4.5」 .. n(ANBNC)=2". これらと①より、求める個数は 。 n(ANBNC)=5n-(4+4+4"-3"-3"-3"+2") - 解説 ① ② で用いた公式を集合記号を用いて書くと、次のようになります。 (作られる 自然数全体の集合を表します. ① :n(A∩B)=n(Un (A∩B)- =n(U) -n (AUB) 除原理 . ド・モルガンの法則 ② : n (ANBNC) =n(U) -n (ANBNC)- 確率では事象 (U)-{n(A)+n (B)-n (A∩B)). =n(U)-n(AUBUC)L =n(U)-{n(A) + n(B)+n(C) ド モルガンの法則 ラ包除原理 -n(ANB)-n(BNC)-n(CNA)+ n(ANBNC)). ①ならまだしも,②をマジメに書くとそれだけで疲れちゃいますから、解答のよう にイキナリ数値を書きましょう. そもそも、 上記等式を“公式”として覚えて使ってい るというより, (2) のカルノー図や (3) のベン図を見ながら個数を過不足なく数えてい 注意1 ITEM 22 でも書いたように、ベン図を用いる際には、“本質的な集合”, つま るという感覚でいて欲しいものです。 り個数を求めやすい集合が輪の内側になるように描かなければなりません。 本間で求 めやすいのはA,B,C の方ですね。なので解答のような描き方になったわけです。 重要 再確認しておきましょう. ベン図を書く人にも工夫 集合の名称 2つの集合絡んだら, 名前を付けてカルノー図 3つの事象ではベン図.ただし輪の内側が求めやすいように. 注意2 本間では ITEM 6 注意でお見せした“主役脇役ダブルカウント”という有名な誤答 をする人が多いので注意すること. A TAATETER. ステージ3 入試実戦編 場合の数 95 → 5.19 類題 33 8/3× 100から999の3桁の整数の中で、 3つの位の中に2の倍数と3の倍数の両方を含むもの の数を求めよ.0=20より0は2の倍数同様に,0は3の倍数) ( 解答解答編p.11)

回答募集中 回答数: 0
数学 高校生

赤い丸で囲んであるところが全くわからないです…💦

重要 例題 232 媒介変数表示の曲線と面積 (2) 媒介変数tによって, x=2cost-cos2t, y=2sint-sin2t (0≦t≦) と表される右図の曲線と, x軸で囲まれた図形の面積Sを求めよ。 PALER CH CHART 解答 図から, 0≦t≦↑ では常に y≥0. また OLUTION 基本例題228 では,t の変化に伴ってxは常に増加 したが, この問題ではxの変化が単調でないとこ ろがある。 右の図のように、 t=0 のときの点をA, x座標が 最大となる点をB (t=to でx座標が最大になると する), t=π のときの点をCとする。 この問題では点Bを境目としてxが増加から減少 に変わり, x軸方向について見たときに曲線が往 復する区間がある。 したがって, 曲線 AB をy, 曲線 BC を とすると, 求める面積Sは CONTO S=Synx Synx と表される。・・・・・ 2008 y=2sint-sin2t=2sint-2sintcostanial =2sint(1-cost) よって, y=0 とすると 0≦t≦x から t=0, π 次に, x = 2cost-cos 2t から dx dt -=-2sint+2sin 2t =-2sint+2(2sintcost) =2sint(2cost-1) 0 <t<π において 1 FAVO dx - = 0 とすると, sint> 0 から dt 「 cost=- ゆえに π t=₁ よって、xの値の増減は右の表のようになる。 sint = 0 または cost=1+sajest 15 0<a Fachs C In t dx dt x よって,xの値の増減を調べ, x座標が最大となるときのtの値を求めてSの式 を立てる。また,定積分の計算は,置換積分法によりxの積分からの積分に直 して計算するとよい。 -3 t= を求めている。 y2 0 0 1 0000 y₁ 13 S 曲線が往復 している区間 (小 ... yA + 0 Hinf. 0≦t≦π のとき sint≧0,cost≦1 から y=2sint(1-cost) 20 としても,y≧0 がわかる。 0 A 1 t=0+ π 3 0 3 2 基本 228 *** •B TI [] t=to π 0 -3 ゆえに, osts におけるy をyi, sts におけるyを X=- 20030-caso =2-1 [ ] とすると, 求める面積Sは s=S²¸y=dx−Svidx ここで、0≦ osts において、 x=1のとき t=0, であるから また、において x=2のとき 一 であるから よって 3 x= のとき S² vidx=Sy dx ここで dt dt x=3のときt=" S²¸yzdx=Syddt t=7 s-Syndx-S² vndx-Syddi - Sydd dt dx -Sidedt + Sy dr dt-Sydx dt =S(2sint-sin2t)(−2sint+2sin2t)dt = S-2s -2sin22t+6sin2tsint-4sin't)dt =2f (sin2t-3sin2tsint+2sint)dt 4t sin 2t dt-S¹-cost dt-t-sin 4- ・dt=- 2 (3sin2tsintdt-3" 2 sint cost-sintdt EES S2 sintdt=2^1-69824dt=[1-1/2 sin24] 月 sin'tdt=2f"1-cos2tat=| =1 S= = -65 sint cost dt = 65" sinºt(sint)dt = 6-sin't] =0 =6 Y -3 注意 と は,xの式と しては異なるから |Sydx-vidx=S_¸ydx としてはいけない。 一方の式としては同じ y=2sint-sin2t) で表さ れる。 355 Sf(x) dx = -f(x) dx Sf(x) dx + f(x) dx -Sof(x)dx ← S₁ƒ (x) dx = -S₁ƒ (x) dx 1-cos 20 2 inf. 積和の公式から 3sin2tsintdt sin'0= ---√ (cos (cos 3t-cost)dt -sin 3t- =0 したがってS203 としてもよい。 [inf. この例題の曲線は, カージオイドの一部分である(p.103 補足参照)。 Tri y PRACTICE・・・・ 232 ④ 媒介変数tによって, x=2t+t, y=t+212 (-2≦t≦0) と表される曲線と, y軸で 囲まれた図形の面積Sを求めよ。 ds de 8章 25 20

回答募集中 回答数: 0
数学 高校生

1番と2番についてです。 記述問題だとするとこれだと説明不足ですか?

域 そ 味 基本 78 2次関数の最大・最小 (3) 例題 者は正の定数とする。定義域がりである関数y=x-&x+1の最大値およ 00000 a び最小値を,次の各場合について求めよ。 (2) 2≦a<4 (1) 0<a<2 (3) a=4 (4) 4 <a 指針 定義域が 0≦x≦a であるから,αの値の増加とともに定義域の右端が動き, 図のように、 xの変域が広がっていく。 まず, 各場合のグラフをかき, 頂点と区間の両端の値を比較 して最大・最小を判断する。 (1) 軸 (2) 軸 解答 関数の式を変形すると (2) 2≦α<4のとき (3) α=4のとき [1] y=(x-2)^2-3 関数y=x²-4x+1のグラフは下に凸の放物線で, 軸は直線x=2, 頂点は点 (2,3) である。 (1) 0<a<2のとき (4) 4 <αのとき x x=0で最大値1, x=2で最小値 -3 グラフは図 [1] のようになる。 x=0で最大値1, x=αで最小値α²-4a+1 グラフは図[2] のようになる。 0 0 a²-4a+1 -3 |軸 x = 0, 4で最大値1, x=2で最小値-3 a 12 (3) 軸 グラフは図 [4] のようになる。 x=αで最大値 α²-4a+1, x=2で最小値-3 最小 グラフは図 [3] のようになる。 (1=0. O ●チートキ a²-4a+1 0 2 ar 1/4 近 -3- |最小 (2) 3≦a<6 lax x [3] 0 (4) 軸 Ay 軸 最大 -3--- 0140 0 チートキ 検討 例題 78 では,α=2,4が場合分けの 境目であるが (1) 0<a<2のとき, 軸は区間の右 外。 最小 (3) a=6 ax 2<αのとき, 軸は区間内にあり (2) 2 <a<4のとき, 軸は区間の中 央より右にあるので, x=0の方 が軸から遠い。 |a=2のときは,軸は区間の右端) x=2) に重なる。 (3) α=4のとき, 軸は区間の中央 に一致するから, 軸と x=0, α と の距離が等しい。 (4) 4 <a のとき, 軸は区間の中央 より左にあるから, x=α の方が 軸から遠い。 基本77 最大 ■頂点 ●区間の端 [4] ! Ay 軸 α2-4a+1/ 最大 1-- 12 0 670 -3- 129 (4) 6<a Tax ED 最小 練習 定義域が 0≦x≦a である関数 y=-x2+6x の最大値および最小値を,次の各場合 @ 78 について求めよ。 (1)a<3 3章 10 2次関数の最大・最小と決定

回答募集中 回答数: 0