学年

教科

質問の種類

数学 高校生

103.2 記述に問題点等ありますか?

と 素 のの 参照。 倍 や 考え さ の はる 去は、 音数 され 本書 数は して、 含め ・35 きる = 5.7 基本 例題 103 約数と倍数 は0でない整数とする。 a, a 1①1) 1/14/0 a がともに整数であるようなαをすべて求めよ。 とんがともに3の倍数ならば, 7a-46も3の倍数であることを証明せよ。 (2) a (③) a が6の倍数で,かつaが6の約数であるとき,aをbで表せ。 「αが6の倍数である」ことは,「6がαの約数である」 ことと同じであり,このとき, 整数kを用いて a=bk と表される。このことを利用して解いていく。 (1) αは5の倍数で,かつ40の約数でもある。 解答 (1) が整数であるから, αは5の倍数である。 ゆえに, って 40 40 8 a 5k k 40 が整数となるのはんが8の約数のときであるから a k = ±1, ±2, ±4, ±8 α=5kと表される。 を整数として したがって α = ±5, ±10, ±20, ±40 (②) a,bが3の倍数であるから,整数k, lを用いて 0 a=3k, b=3l と表される。 よって 7-46=7・3k-4・3l=3(7k-4l) 7k4lは整数であるから, 7a-4bは3の倍数である。 (3) a が6の倍数, αが6の約数であるから, 整数k, lを用いて a=bk, b=al と表される。 a=bk をb=al に代入し, 変形すると b=0であるから (検討 これは 誤り! b(kl-1)=0 kl=1k,lは整数であるから a=±b したがって 00000 p.468 基本事項 ① k=l=±1 bαの約数 a=bk Laは6の倍数 < =k(kは整数)とおい 5 てもよい。 < α = 5k を代入。 負の約数も考える。 <a =5kにkの値を代入。 整数の和差積は整数で ある。 α を消去する。 k,lはともに1の約数であ る。 上の解答の で, lを用いずに, 例えば (2) で α=3k, b=3k のように書いてはダメ! これでは α = bとなり, この場合しか証明したことにならない。 α, 6は別々の値をと のようにk, Z (別の文字) を用いて表さなければならない。 る変数であるから, 練習 (1) 2つの整数 α, bに対して, a=bk となる整数kが存在するとき, bla と書く 103 ことにする。 このとき, a 20 かつ2αであるような整数α を求めよ。 証明せよ。 ただし, a, b, c, d は整数とする。 倍数ならば, ' + 62 は8の倍数である。 とげcdはabの約数である。 469 4章 7 約数と倍数 最大公約数と最小公倍数 17 5 O" ON YO 3 7 し

回答募集中 回答数: 0
数学 高校生

至急お願いします! 数Bの数列の問題です。 例文のS1=... のところが、何故分子が(pn-1)-(pm+1)+1 になるのか分かりません。 ですが、問題全体の解説をしていただけると助かります 一緒に練習問題も教えてくださいm(_ _)m 早めに教えていただけると幸いです... 続きを読む

0000 重要 例題 9 既約分数の和 pは素数m,n は正の整数でm<nとする。 mとnの間にあって, pを分母と する既約分数の総和を求めよ。 基本 6,7 指針 まず,具体的な値で考えてみよう。 例えば,2と5の間にあって3を分母とする分数は 8 9 7. 7. 7. 10. 12. 13. 14. 11 3'3' 3' 3'3'3 3 であり,既約分数の和は(*)の和から, 3と4を引くことで求められる。 このように、全体の和から整数の和を除く方針 で求める。 まず,g を自然数として,<_<n を満たす 解答する。 pm<g <pnであるから g_pm+1 pm+2 よって か か これらの和を とすると S₁= ①のうち, =1+11-0 g=pm+1,pm+2,......, pn-1 (pn-1)-(pm+1)+1 2 pn-pm-1 2 = p (m+n) が整数となるものは これらの和を S2 とすると S2= _=m+1, m+2, ….…, p n-m-1 2 pm+1 Þ 2 S= pn-pm-¹ (m+n) - ² 2 pn-1 か n-1 (n-1)-(m+1)+1{(m+1)+(n-1)} 2 -1/12 (m+n)(n-m) (p-1) L (*)は等差数列であり,3と4は 2と5の間にある整数である。 + 初項川未 n-m-1 2 (m+n){(n_m)p−(n_m)} -を求め · pn-1) 0>1+nd -(m+n) ゆえに, 求める総和をSとすると, S=S-S2 であるから -(m+n) 「mとnの間」であるか ら、 両端のmとnは含 まない。 pm+1 か の等差数列。 ① 初項 S= 2 ((-)-(1-x) Fuck Sin- 公差 1 -n(a+l) mとnの間にある整数。 ◄ S₁ ==—= n(a+l) (全体の和) (整数の和)

未解決 回答数: 1
数学 高校生

(4)が解答を見てもわかりません。 教えてください。

太郎さんと花子さんはそれぞれ,何も書いていない6枚のカードを持っている。 太郎さんは、 自分が持っ 標準 12分 数の和が30 になるようにする。 二人は、用意したカードを使って、 次のルールに従ってゲームをする。 に一つずつ正の奇数を書く。 ただし, カードに数を書く際には、 自分が持っている6枚のカードに書かれた ているカードのそれぞれに一つずつ0以上の偶数を書き, 花子さんは、 自分が持っているカードのそれぞれ ルール それぞれが、自分の持っている6枚のカードから1枚を無作為に選び、選んだカードに書かれたも を自分の得点とする。このとき、得点の大きい方を勝者とする。 はじめ,太郎さんと花子さんは6枚のカードに次のように数を書いた。 太郎さん 2 ④4 6 8 10 花子さん: 15 555 19 + 3 33 35 (1) 太郎さんが 6 のカードで花子さんに勝つ確率は (2) 太郎さんが勝つ確率をPr, 花子さんが勝つ確率をPとすると はまるものを次の⑩~②のうちから一つ選べ。 ⑩Pr<PH 私が 1 3 57 a1+a2+a3+a+as = オ ア a₁ +3a2+5a3+7a4+9a5 = カキ である。 0 PT>PH @ PT=PH*600* 花子さんは,カードに書く数を変更することで,自分が勝つ確率PHを大きくしようと考えた。まず、カ ードに書く数の候補を1,3,5,7,9の5種類のみとして確率を考えたのが、次の花子さんのノートである。 ・花子さんのノート 選んだとき 23 77のカードを選んだとき これらを用いると,私が勝つ確率P を求めることができる。 イウ LATTEOT である。 AF FS 944 9 のカードをそれぞれ ②1枚 22 枚, α3枚 4枚 α5 枚持っているとすると a2 解答・解説 JO134 300 私が勝つ確率は,私が①のカードを選んだとき / 2 3のカードを選んだとき 25のカードを H である。 のカードを選んだとき 3 オ カキに当てはまる数を求めよ。 4) 花子さんのノートを参考に,正しいといえるものを、次の⑩~③のうちから二つ選べ。 ただし,解答 順序は問わない。 ク ケ ⑩ 花子さんがカードに書く数の最大値を7とすると、常にPH < 1 である。 ① 花子さんがカードに書く数の最大値を9とすると、常にPH=1/2である。 オカキクケ 2 ②花子さんがカードに書く数の最大値を 11 とすると, PH> / となることがある。 ③ 花子さんがカードに書く数の最大値を13 とすると、常にPH</である。 2 に当て

回答募集中 回答数: 0