学年

教科

質問の種類

数学 高校生

数2の二項定理です。その前のパスカルの定理はわかったのですが、 二項定理の説明が全くわかりませんでした、、、 説明がわからないので、例や問題も全くわかりません、、💦💦 量が多いのですが解説してくださると嬉しいです!!

5 10 15 20 25 5 10 15 20 25 二項定理 (a+b)^ の展開式における abの係数は、パスカルの三角形から4であっ た。この係数は,組合せの考え方を利用して求めることもできる。 (a+b)^ すなわち (a+b)(a+b)(a+b)(a+b) 1節多項式の乗法・除法と分数式 1 3 を展開して得られる項は, 4個の因数 ①,②, ③ ④ のそれぞれから, aかのどちらかを 取り出して掛け合わせた積である。 例えば, 'b の項は、4個の因数のうち1個 の因数を選んで6を取り出し、残り3個の因数 からαを取り出して掛け合わせることにより得 られる。 すなわち, 4個の因数から1個の因数を選ぶ選び方の数だけ αb の項が できる。 したがって, dbの項は 4C1 = 4 (個) 現れるから, dbの係数 はCである。 同様に考えると, (a+b)^ の展開式におけるすべての項 a¹, a³b, a²b², ab³, 64 の係数はそれぞれ (4) axaxax b = a³b (a+b)" の展開式における項は,一般に 1 4 Co, 41,42, AC3, 4 CA である。一般に,次の二項定理が成り立つ。 二項定理 (a+b)" = nCoa"+nCra"-16+nCza"-262+・・・ 2 axaxbxa = a³b axbxaxa = a³b bxaxaxa = a³b +nCra"rb"+..+nCn1ab-1+nCnb" Cra"-"b" (r = 0, 1, 2, ..., n) と表される。これを (a+b)" の展開式の一般項という。 ただし,やが は1と定める。 また, C, を二項係数ともいう。 9 1章 草 方程式・式と証明 A

解決済み 回答数: 1
数学 高校生

公式が理解できません。助けて欲しいです! (N+1)− Nをすれば差が求められる事はわかるのですが、 この場合N−N+1で差を求めていて困っています。 正直赤線の斜線がどうして消し合えているのかもわかりません。。。

分数の数列の和 基礎例題 86 1 1 1 2.4' 4.6' 6.8' 数列 CHARI GUIDE) ■解答 第k項は 1 第k項 1 を部分分数に分解する。 2k (2k +2) ②①を利用して,各項を差の形に直して、求める和 3 和を求める。 201 2n(2n+2) 分数の数列の和 部分分数に分けて途中を消す 20 +......+ ++ ( + / 2k (2k + 2) = + ( + k + 1) ① と表されるから k k+1 の和Sを求めよ。 うまく消し合って和Sが求められる。 s = s -/1/1(1-121)+1/1/1(12/2/1/2)+1/1/11/13-1)-(+税) +・・・...+ + (-1/2-2 + 1) 81-(2+1)- n 求める和Sを書いてみる。 n+1 n = -1 (1-1² + 1) = 1 + ² + 1 = = 12/11(12/1/2)+(1)+(1/1隣り合う2項が詳したり 4 て残るのは // n 4(n+1) 式を導くときに利用している。なお Lecture 分数の数列の和(分解して消える形) 例題のように,第k項がんの分数式で表される数列の和は, 第k項を部分分数に分解して加えるという方法が有効である。 一般に,第k項が α=f(k+1) - f(k) で表されるとき k=1, 2,3, 1 として加えると,右のようにうまく消 し合って和が求められる。 この考え方は, p.475 でΣk²の公 ←部分分数分解については 数学ⅡI 参照。 ← ① に k=1,2,....., を代入して辺々を加 える。 NOD32 n+1 a₁ = F(2)-f(1) a2 = F (3)-F(2) a3=F(4) - 7(3) An-1=F(n)-F(n-1) 71-74

解決済み 回答数: 1