学年

教科

質問の種類

数学 高校生

(3)を解いてみましたが、答えが違いました。どこで間違えたのでしょうか。 また、(-2/3)^(n-1)の場合、マイナスは偶数乗か奇数乗かが固定されていないと、括弧の外に出せないという考え方であっていますか?

10 和と一般項の関係, 3 項間漸化式 - 数列{an}が, a=-1,22ar=3an+1-24-1 (n=1, 2, 3, ...)を満たすとき, (1) az を求めよ. (2) 3an+2-70n+1+20m=0を示せ. (3) am を求めよ. an=S-S1 (山形大工/一部省略) S” を含む漸化式は, 「an=S-S-1 (n≧2)」......☆を用いて, S を消去し,4 だけの漸化式に直す. ☆は一般にはn≧2のときのみに通用することに注意 (n=1 とするとn-1=0 になってしまう!). n=1のときは, α = S」 を用いる。 an+2+pan+1+gan=0 an+2+pan+1+ga=0の一般項を求めるには,r' + pr+g=0の解α,βを 用いる. 解と係数の関係より, か=-(a+β), q=aB. よって, an+2-(a+β)an+1+αBa=0. これを an+2-αan+1=B(an+1-αan), an+2-Ban+1=α (an+1-Ba) と変形する. α=βのときは,an+2-αan+1=α (an+1-αan)より, an+1-4a=an-1 (a2-aa)として, an+1=αan+san-1 (s=az-aa1). これをα+1で割り, bn=alα" とおくと {bm} は等差数列になる. 解答 Sn=ax とおくと,2S=3an+1-24-1 (1) ① n=1 とすると, 2S1=3a2-241-1 S=q=-1だから, -2=3a2+2-1 ∴. a2=-1 (2) ①のnをn +1 にすると, 2Sn+1=3an+2-2an+1-1 ②-①より, 20+1=34n+2-34n+1-2an+1 +2an :.34n+2-7an+1+2an=0 (3) (2)より, an+2 7 2 13an+1+1/30m=0 [右の傍注に注意し] ③を変形して 1 an+2-24n+1=1/22 (an+1-2an) ④, an+2 (ant1-20),ant2-1/30nt1-2 (0mts-1230円) \1 1\n-1 an+1- ←S+1-Sn=an+1 7 ③ rr+ x+2=0の解 --- 3 (2) (11/23)により ....5 1 x=2. 3 ⑥④より{an+1-2cm} は公比 1/3 の 等比数列. 2-1 ...... 7 a-(—)" (az−2a1) = ( )" (−1+2)=(3)- =(1/1) 3 ④より, an+1-2an= ⑤より, an+1一 an=2n-1 a2 12-130-20-(02/24)-20-1(-1+1/3)-(-/3/3) 2 =2" よって, 3 n-1 ・2"-1- 10 演習題 (解答は p.76) 2Sn2 数列{a} は,q=1, an= (n=2, 3, 4, ...) を満たす. 2Sn+1 ただし, Sn=a+az+... +an である. (1)a2 を求めよ. (2) SS-1 を用いて表せ. (3) S (2) 前文に反しか らを消去する. C (芝浦工大) (3) 11を参照。

回答募集中 回答数: 0
数学 高校生

(3)でまずそれぞれの色から一つずつ取り、残った計13個から1つ選ぶという解き方だと解けないんですか?

1 3007 2 場合の数の比で求める / 同じモノを含む 箱に,赤球6個,青球7個, 白球3個の合計16個の球が入っている. この中から同時に4個の球 を取り出すとき, (1) 4個とも赤球である確率は (2) 赤球を含まない確率は [ である. である. (3)取り出した球の中に,どの色も入っている確率はである. (4) 赤球と白球を含む確率は である. (松山大経) 同色の球でも区別するのが基本 この例題の16個の球から1個を取り出すとき, 赤球である確率 は (1/3ではなくて) 6/16である. この例であれば,「分母の16は球の総数.つまり,同色の球でも区 別して, 区別された1つ1つが等しい確率で取り出される(同様に確からしい)」と自然に考えられるだ ろう.取り出す個数が増えても同じで、すべての球を区別して取り出す球の組合せ (並べる場合は順列 の1つ1つが同様に確からしい, と考えるのが原則である. 解答 (3)①1,2℃のとこを考え斜 赤球6個, 青球7個, 白球3個の16個をすべて区別すると、取り出す 4個の組 合せは 16C4通りあり,これらは同様に確からしい。 ②全てを数えあげ(ゆにダブリーカラース (4) 青きよくまが 6C4 (1) 赤球6個から4個を取り出すとき, その組合せは 6C 通りあるから, 6C4 求める確率は 16C4 - 6.5.4.3 3 ・16・15・14・13 2.14.13 3 364 (2) 赤球以外の10個から4個を取り出す場合であり,その組合せは 104 通り 分母分子に4をかけた[ 先に1つう、残りわリング ① ③ ④ ⑥ ③ 10C4 10-9-8-7 3 3 ① ある. よって, 16C4 16・15・14・13 2・13 26 In-p! (3) どの色の球を何個取り出すかで分類すると, (i) 赤2個, 青1個, 白1個のときは C2×7×3=3・5・7・3通り 6.5.1 2.1 ←個数は2,1,1 (ii) 赤1個, 青2個, 白1個のときは6×72×3=6・7・3・3通り 8.7.6.3. ここで計算してしまわない方が よい。 ( )赤1個, 青1個, 白2個のときは6×7×3C2=6・7・3通り 以上より, 求める確率は 気にとる=順等関係ない 41 = 前のえらびに依存しない たしま 3・5・7・3+6・7・3・3+6・7・3 16C4 (4! 32.7(5+6+2) 16・15・14・13 4.3.2.32 16.15.2 9 20 7(5+6+2)=713で約分 (4)(3)にまたまたい (土酔し当琲なひょ)

未解決 回答数: 2