学年

教科

質問の種類

数学 高校生

数学的帰納法で、n=k+1の証明でn=kで仮定した条件を用いて証明してもよいのでしょうか n=k+1で自分は不等式を作り左辺に移項したあと「n=kの仮定より」みたいな感じで証明したのですけどこれが解答として正しいやり方なのか教えてほしいです

基本 例題 47 数学的帰納法と不等式の証明 423 00000 25 を満たす自然数nに対して, 22 が成り立つことを数学的帰納法に よって証明せよ。 CHART & SOLUTION 数学的帰納法 (一般 [1] 出発点は n=1 に限らず [2] n=k の仮定から n=k+1 の証明 この例題では,n≧5 であるから,まず [1] n=1のときの代わりに [1] n=5のとき を出発点とする。 420 基本事項 1. 基本45 また, 不等式 A>B を証明するのであるから, A-B> を示せばよい。 解答 2">n2 ...... ① とする。 [1] n=5のとき (左辺 =25=32, (右辺) =52=25 ゆえに,不等式① は n=5のとき成り立つ。 ① [2] k≧5 として,n=k のとき ①が成り立つと仮定すると ときい)が成り立つと仮定 n=k+1 のとき,①の両辺の差を考えると $50 (= 17 (左辺)=2+1 1章 5 数学的帰納法 2k+1_(k+1)=2.2-(k+2k+1) >2k2-(k+2+1) + (右辺)=(k+1)2 +2.2">2.k² =k2-2k-1=(k-1)^2>05であるから すなわち 2 +1(k+1)2 よって, n=k+1 のときにも不等式①は成り立つ。 [1] [2] から, n≧5を満たすすべての自然数nについて不等 式①は成り立つ。 (k-1)^2はk=5で 最小値 14 (>0) をとる。 INFORMATION 2 と n2の大小関係 関数 y=2*, y=x2 のグラフは右の図のようになる。 このグラフから2">n (n≧5) がわかる。 y. 16- y=x2 これを繰り返すことに、 4F- v=2 O 2 4x

解決済み 回答数: 2
数学 高校生

PR29の3題について質問です。 なぜ置き換えが必要なのですか? どうしたらaよりbのほうが大きいとか大小関係がわかるんですか? 回答お願いします🙇

PR 不等式 la + bls|a|+|6| を利用して、 次の不等式を証明せよ。 ② 29 (1) a-bl≦|a|+|6| (3) la+b+cls|a|+|0|+|c| 第1章 式と証明 21 (2) la-clsla-6|+|b-c| [info] la + b/sla|+161 の証明は、基本例題 29 (1) を参照。 (1)|a+b|≦|a|+|6| のbを-6におき換えて la-bl≦|a|+|-6| ここで |-6|=|6| よって |a-b|≦|a|+|6| (2)|a+bl≦|a|+|6| の a を a-b, b を b-c におき換えて よって | (a-b)+(b-c)|≦la-6|+|b-c| la-cl≦la-b|+|b-c| (3)|a+b|≦|a|+|6| の a を a + b, bをcにおき換えて [(a+b)+cl≦la+6|+|c| また, la +6≦|a|+|6| から ①② から ...... ① la+6|+|c|≦|a|+|6|+|c| ...... ② la+b+cl≦|a|+|6|+|c| 両辺に |c|を加える A≤B, B≤C ⇒ASC PR 30 9 (1) 4a+≥12 a (1) 4a>0, a 9 9 係により a, b, c, d は正の数とする。 次の不等式が成り立つことを証明せよ。 また、 等号が成り立つの どのようなときか。 9 (2) (6+) (+) 24 ->0であるから,相加平均と相乗平均の大小関 4a+22/4a-2-2-6-12 9 よって 4a+-≧12 a 9 等号が成り立つのは4a= すなわち a=2のとき。 a 9 4a²-12a+9 9 +4a= 5 a² a α> 0 であるから 別解 4a+ i-12= a a (2a-3)2 a (2a-3)≥0 a>0 (2a-3)≧0 より よって 4a+ a+21 ≥12 a a 等号が成り立つのは、2α-30 すなわち α 32 のとき。 (実数20

解決済み 回答数: 1
数学 高校生

回答一行目から2行目、計算過程を教えていただきたいです。よろしくお願いします🙇

要 例題 34 「少なくとも1つは・・・」の証明 00000 1 1 1 x + + = y 2 1 x+y+z であるとき, x+y, y+z, z+xのうち少なくとも [香川] 基本 24 1つは0であることを証明せよ。 CHART & SOLUTION 証明の問題 結論からお迎えに行く まず結論を示すには, どんな式が成り立てばよいかを考える。 x+y,y+z,z+xのうち少なくとも1つは0である。 ⇔x+y=0 または y+z=0 または z+x=0 ⇔ (x+y)(y+z) (z+x) = 0 * よって,を証明すればよい。 一 1 XC + 1 + y よって 12 1 の両辺に xyz (x+y+z) を掛けると x+y+z (x+y+z)(yz+zx+xy)=xyz {x+(y+z)}{(y+z)x+yz}-xyz=0 (y+z)x2+(y+z)2x+yz(y+z)=0 xについての式 計算する。 ゆえに (y+z){x2+(y+z)x+yz}=0 (y+z)(x+y)(x+z) = 0 y+z=0 または x+y=0 または x+z=0 したがって, x+y, y+z, z+xのうち少なくとも1つは 0 である。 INFORMATION 上の例題のように,結論から解決の方針を立てる考え方は大切で、証明の問題 ず, 有効な方法である。 以下には,代表的なものを紹介しておく。 ① x, y, zの少なくとも2つは等しい ⇒(x-y)(y-z)(z-x)=0 x, y, zの少なくとも1つは1に等しい ⇔ (x-1)(y-1)(z-1)=0 ③実数x, y, zのすべてが1に等しい ⇔ (x-1)2+(y-1)+(z-1)^=0 + 1 b + 1 C -=1であるとき, a, b, cのうち少なくとも1 PRACTICE 34° a+b+c=1, a

解決済み 回答数: 1