学年

教科

質問の種類

数学 高校生

次の青線が計算しても求められないのですがどなたか解説お願いします🙇‍♂️

接線 ①が点 (0, 2) を通るから 2 = 6t° +7 +1 6t37t + 1 = 0 を解くと (t-1)(6t2-t- (t-1)(2t-1)(3t+1 0 1 よって 1 t=1, 2' 3 これを ①に代入すると y=-5x+2, y= 17 -x+2, y= 4 3x+2 すなわち y=(2t-5)x-t+1 ... ②② 接線 ①,②が一致することから f3s2-3=2t-5 ... ③ 組立除法を利用する。 [-2s3=-t+1 ... ④ +) 6-7 0 6-1-1 1 ③ ④より, tを消去して整理すると Sは実数より s2 (9s2-8s +12)=0 S = U 6 -1 -1 0 これより t=1 したがって, 求める共通接線の方程式は y=-3x 〔別解〕 (4行目まで同じ) ① と y=x-5x+1 を連立すると (3s2-3)x-2s' = x-5x+1 整理すると x²- (3s+2)x + 2s + 1 = 0 210 (1) αは実数とする。 2つの曲線 y=x+2ax²-3ax-4 と y=ax22a3aはある共 有点で両方の曲線に共通な接線をもつ。このとき,αの値を求めよ。 (2)2つの曲線 y=x-3x,y=x25x+1 の共通接線の方程式を求めよ。 (1) f(x) = x +2ax-3ax-4,g(x) = ax-2ax-34 とおくと (千葉大) 直線 ①と放物線y=x-5x+1 が接するから, ⑤の判別式をD とすると D=0 D = (3s' +2)-4(2s'+1)=s'(9s8s+12) s2 (9s2-8s+120 より s=0 f'(x) = 3x+4ax-34, g'(x) =2ax-24 したがって, 求める共通接線の方程式は y= -3x 共通接線をもつ共有点のx座標をおくと f(t) = g(t) より t3+2at2-3at-4-at2-2at-3a ・・・ ① f'(t) =g'(t) より 3t2+4at 3a² = 2at-2a² ・・・② ②より 3t+2at-d=0 共有点のy座標は等しい。 共有点における接線の傾 きは等しい。 211 次の関数のグラフをかけ。 (1) y=x-3x +2| (2) y = |x|(x²+x-1) (t+a) (3t-a)=0 a よって t = -a, 3 (1) f(x)=x3x²+2 とおくと f'(x) = 3x-6x=3x(x-2) (x) = 0 となるxは x=0,2 (ア) t = -a のとき ① より 4a3-4 3a3-3a a3+3a-4=0 (a-1) (a²+α+4) = 0 αは実数であるから a=1 a (イ) t= のとき + 組立除法を用いると 1 1 0 3 -4 11 4 114 0 a³ 2a3 a³ 2a3 α+α+ 4 = 0 は実数解 をもたない。 ①より + a3-4= -3a 27 9 9 3 a3+6a3-27a3-1083a3-18a3-81a 5a3-81a 108 = 0 (a-3)(5a²+15a-36) = 0 -15±3/105 よって a = 3, 10 (ア)(イ)より -15±3/105 a = 1, 3, 10 (2) 曲線 y=x-3x 上の接点をP(s, s-3s) とおくと, y'=3x²-3より, 点Pにおける接線の方程式は y- (sa-3s) = (3s2-3)(x-s) すなわち y=(3s2-3)x-2s3 ... ① 曲線 y=x^-5x+1 上の接点をQ(t, ピ-5t+1) とおくと, y'=2x-5 より, 点Qにおける接線の方程式は y-(t-5t+1)=(2t-5) (x-t x 0 ... 2 f'(x) + - 0 0 よってf(x)の増減表は右のよ うになる。 f(x) 2 ゆえに、関数(x)は x=0のと 極大値 2 x=2のとき 小値 2 また, f(x) =0 とおく (x-1)(x-2x-2)=0 よ x=1, x=1±√3 A 両辺に27を掛けて整理 する。 ●組立除法を用いると 1-√√3 3 5 0-81 108 +) 15 45-108 5 15-36 10 (1±√3,0 なり,y=f(のグラフは右の図。 y=f(x)のグラフは,y=f(x) の グラフ よって, y=f(x)のグラととの 共有点の座標は (1 y-f(s) = f'(s) (xls) を用いる。 x 軸より下方にある部分を 軸にして折り返したものであるから るグラフは右の図。 f(x)=|x|(x²+x-1) とおく。 (ア) x≧0 のとき f(x)=x(x²+x-1)=x+x-x より 1-30 f'(x) = 3x2+2x-1= (3x-1)(x+1) f (x) = 0 となるx は, x≧0 より x= 13 W 1 2 1+3

解決済み 回答数: 1
数学 高校生

(2)について質問です。 赤線部のように分かるのは何故ですか?🙏

152 基礎問 96 接線の本数 曲線 C:y=x-x 上の点をT(t, ピーt) とする. (1)点Tにおける接線の方程式を求めよ. (2)点A(a,b) を通る接線が2本あるとき,a,bのみたす関係式 を求めよ.ただし,a>0, b≠α-a とする. (3)(2)のとき、2本の接線が直交するようなa, 6の値を求めよ. 精講 (2) 3次関数のグラフに引ける接線の本数は,接点の個数と一致し ます. だから、(1)の接線にA(a, b) を代入してできるtの3次方 程式が異なる2つの実数解をもつ条件を考えますが、このときの 考え方は 95 注で学習済みです。 (3) 未知数が2つあるので, 等式を2つ用意します。 1つは(2)で求めてあるので, あと1つですが, それが 「接線が直交する」 を式にしたものです.接線の傾きは接点における微分係数(34) ですから、 2つの接点における微分係数の積=-1 と考えて式を作ります. 解答 (1) f(x)=x-x とおくと, f'(x)=3x²-1 よって, Tにおける接線は, y-(t-t)=(3t-1)(x-t) 186 y=(3t2-1)x-2t3 (2)(1) の接線は A(a, b) を通るので b=(3t2-1)a-2t3 :. 2t-3at2+a+b= 0 …………(*) (*) が異なる2つの実数解をもつので, g(t)=2t-3at2+α+b とおくとき, y=g(t) のグラフが,極大値, 極小値をもち, (極大値)×(極小値) =0であればよい.95 注 g'(t)=6t2-6at=6t(t-a) g'(t)=0 を解くと, t=0, t=α だから y=x-x| (t,t³-t) A(a,b)

解決済み 回答数: 1
数学 高校生

次の問題で青線までは分かったのですがそこからどの様にして図示するかがよく分からないのですがどなたか解説お願いします🙇‍♂️

点P(a, b) から曲線 C:y=x-3x に接線が3本引けるとき,P(a, b) の 存在範囲を図示せよ。 点P (α, b) の存在範囲 思考プロセス a -α ともの関係式を導き、 b>g(a) 横軸を α,縦軸を6とする座標平面に領域を図示する。 既知の問題に帰着 αとの関係式を導く考え方は例題 230 と同様である。 b=g(a) 《ReAction 接線の本数は, 接点の個数を調べよ 例題 230) 解 C上の点をT (t, ピー 3t) とおく。 Jay' = 3x2-3 より, 点Tにおける接線の方程式は 209 y-(t-3t)=(3t-3)(x-t) これが点P(a, b) を通るから b-(3-3)=(3t² - 3)(a− t) すなわち 2t3-3at2 +3a+b=0 …① 950 3次関数のグラフの接線は, 1本の接線に対して接点は必 230 ず1点に定まるから, 接線が3本となるための条件はもの 方程式 ①が異なる3つの実数解をもつことである。 f(t) = 2t3-3at°+3a + b とおくと f'(t) = 6t-6at=6t(t-a) f'(t) = 0 とおくと t = 0, a x = 0, y = b を代入する。 よって, 求める条件は a = 0 かつ f(0)f(a) <0 ① f3a+b>0 ① より, (a+b) (-d+3a+b) <0 l-a°+3a+6 < 0 f(t) は極大値と極小値を もつから、f'(t) = 0 は 異なる2つの実数解をも つ。 J3a +6 < 0 よって α≠0 または 1-a+3a+b>0 すなわち ∫b>-3a \b<a³-3a fb <-3a または \b> a³-3a このときαキリであるから, 64 b=a3-3a 曲線 b = 03-3αは 点P(a, b) の存在範囲は右の図の斜 2 線部分。 ただし、 境界線は含まない。 -2- α = -1 で極大値 2 a=1で極小値 2 直線 63α は曲線 b = -3a に原点0で 接している。 b=-3a

解決済み 回答数: 1