学年

教科

質問の種類

数学 高校生

画像の青線部分なのですが、どうして最後の式に辿り着くのかわかりません

m 5-4 (ii) 思考力・判断力 道しるべ (C) 200- 数が連続するカードの組を含まないような4枚の カードの取り出し方を考える. 取り出した4枚のカードの中に,数が連続するカードの 組が少なくとも1組含まれるような取り出し方は, カード の取り出し方の総数から,数が連続するカードの組を含ま ないような4枚のカードの取り出し方を引いたものであ る. 数が連続する組を含む場合 は, 4枚連続する組を含む, 3枚のみ連続する組を含む, 2枚のみ連続する組を1組だ け含む, ・4枚連続する組は含まれず, 2枚のみ連続する組を 2 組含 そこで,数が連続するカードの組を含まないような4枚のいずれかである。これらの総 のカードの取り出し方を考える。 ~35) 和を直接求めるのは大変である から,その補集合である 「数が 連続するカードの組を含まな い」ような4枚のカードの取り まず, x<y を満たす整数x,yに対して、出し方を考える x <y<y+1 210 であり,xとyが連続する2整数であっても,xとy+1 は連続しない . 同様にして, x<y<z<w (C) を満たす整数x, y, z, w に対して, x<y+1<z+2 <w+3 であり, xとy+ 1, y +1 と z +2, z+2とw+3は連 続しない。 <- (たとえば, よって, 数が連続するカードの組を含まないような4枚}(x,y,z,20)=(1, 2, 9, 10) のとき, のカードの取り出し方は, (x, y+1,z+2,w+3)=(1,3,11,13) となるから、取り出した4枚は, ♡ ♡ 1≦x<y+1<z+2<w+3≦ を満たす整数x, y +1, z+2, w+3 の組 (x, y+1,z+2, w+3) の個数, すなわち、 1≦x<y<z<w≦10 を満たす整数x,y,z, wの組 (x,y,z, w)の個数に等し い。 このような組合せは、1から10までの異なる10個の 整数から4個の整数を取り出して, 小さい順にx,y,z, 01S=(3) wに当てはめればよいから, 取り出し方は, A 3 J K となり,数が連続したカードの 組を含まないOS 10.9.8.7 10C4= 4・3・2・1 =210(通り).

未解決 回答数: 1
数学 高校生

答えがこれであっているか教えてください🙇

51 (木) まずは小問集合。 大事な問題は繰り返しやって、 自信をつけていきましょう。 次の を正しくうめよ。 (1) 不等式3(x-2) <2x-5…① の解は(ア)である。 また,不等式①を満たすことは,x<0であるための(イ)。 (イ)に当てはまるものを,下の①~④のうちから1つ選べ。 ① 必要十分条件である ② 必要条件であるが, 十分条件ではない 十分条件であるが, 必要条件ではない ④ 必要条件でも十分条件でもない (2) 次のデータは、あるクラス10人の数学の小テストである。 7,5,8,6,7,8,10,4,3,9 このとき,中央値は (ウ) であり,第1四分位数は(エ)である。 (3)男子2人、女子5人, 計7人の生徒がいる。 この中から委員3人を選ぶ 方法は、全部で (オ) 通りあり、このうち少なくとも1人は男子である 選び方は、全部で (カ) 通りある。 (4) (2x-y) の展開式におけるxyの係数は (キ)である。 また、 (x+2y-3z)の展開式における xy'z の係数は (ク)である。 (1) 3(x-2)<2x-5 3xc-62x-5 20 6.5.4×80303 (4)6G(2x)(-\パー(54 xC1(P) ③- ③ -(1) キ (2) 1,3,4,5,6,7,7,9,10 中央値 6.5-) # 第1四分位数4(土) 4. -1609343 プリシの係数は160(t) また、{(x+2%)-3/24の展開式における 窓の係数は、 4C1=4 (x+2g)におけるxyの係数は 3C2.2°=3×4 (3)7C3 7.65 =35通り(オ) また、少なくとも1人は男子なのは 38.5 6C2 15通り(カ) 入り サ サ =12. (xy2zの係数は4×12=2817

回答募集中 回答数: 0