学年

教科

質問の種類

数学 高校生

ルーズリーフのやり方でやったんですけど、そっからどうすればわからなくて、解答と何が違うのかも含めて答えてくれると嬉しいです!

26 漸化式と極限(3) ・・・ 分数形 ... 数列{an} が α1=3, An+1= 3an-4 an-1 によって定められるとき [類 東京女子大] (1) bn = 1 An-2 とおくとき, bn+1, bn の関係式を求めよ。 (2) 数列{an} の一般項を求めよ。 (3) liman を求めよ。 n→∞ p.36 まとめ, 基本 26 指針 針 (1) おき換えの式bm= 1 an-2 ①の an-2に注目。 漸化式から bn+1 (= 1 an+1-2 の形を作り出すために, 漸化式の両辺から2を引いてみる。 なお,①のおき換えが与えられているから, an≠2としてよい。 (2) まず (1) の結果から一般項bnをnで表す。 (1) 漸化式から an+1-2= 3an-4 解答 -2 an-1 検討 ゆえに an-2 an+1-2= an-1 両辺の逆数をとって 1 an-1 An+1-2 An-2 an+1= SE 分数形の漸化式について 一般項を求める方法は, p.36 の ⑥参照。 rants panta そのとき,特 1 1 よって = +1 an+1-2 an-2 性方程式 x= rxts の解 px+q したがって bn+1=6n+1 がx=α (重解)ならば, (2) (1)より, 数列 {bn} は初項b1=1, 公差1の等差数列で bm= あるから b=1+(n-1)・1=n 1 (または an-a bn=an-a) とおくと, よってie an- (3) liman=lim n→∞ n- 1 1 +2=-+2 = 1 bn +2=2 -2)= n $8 般項 αn が求められる。 CTUL 1 |bn= an-2 から -milan- -2= 1 bn

回答募集中 回答数: 0
数学 高校生

1ページ目の(2)が、なぜ2ページ目の(3)のようにならないのでしょうか、区別の仕方が分からないです。教えてください。

mentos] 190 基本 111 2次不等式の解法 (2) 次の2次不等式を解け。 (1)+2x+1>0 (3) 4x24x+1 (2) -4x+5>0 (4)~3x²+85-6>0 の不等式を ( [指針 平方完成した式から判断できる。 前ページの例題と同様、2次関数のグラブを いて、不等式のを求める。グラフととの共 点の有無は、不等号を番号におき換えた2次方 程式 ax+bx+c=0の の、または く '+2x+1=(x+1) であるから. 解答 不等式は よって、 は (x+1)0 1以外のすべての実数 (2)x4x+5=(x-2)+1であるから, 不等式は (x-2) +10 よって、解はすべての実数 (3) 不等式から 4x³-4x+150 4x4x+1=(2x-1)であるから, 不等式は (2x-11 50 1 よって、 解はx= 2 (4) 不等式の両辺に-1を掛けて 3.x²-8x+6<0 2次方程式 38x+6=0の判別式を D <KKK ADの場合、 基本形に 4x<-1-1 てもよい。 ADDの場合 基本形に、 関数コースー は、すべての y>0 して のとき 1のとき 721 (1) C Dとすると 22-4-3・6=-2 の係数は正で、かつであるから,すべてから、 xに対して3x²-2x+6> 0 が成り立つ。 よって、与えられた不等式の解はない 不等式の両辺に1を掛けて 3x-8x+6<0 x+6=3x1+1/3であるから、 x8+60を満たす実数は存在しない。 よって、与えられた不等式のはない +6 へのグラフと 住むグラフが下に あることから、すべ にして 次の2次不等式を解け。 111 (J)+x+420 (3) -4x+12-920 (2) 2x+4x+3<0

回答募集中 回答数: 0