学年

教科

質問の種類

数学 高校生

数Ⅲ 写真の青線部分の意図と意味がよくわかりません。 ここでの「常に〜〜ではない」は、always not ○○ かnot always ○○でいうとどちらの意味でしょうか? またこの一文はどのような役割をしていますか? もう一つ、この問題文を見た時に「よし、積分を使って... 続きを読む

重要 例題 249 数列の和の不等式の証明 (定積分の利用) 00000 は2以上の自然数とする。 次の不等式を証明せよ。 7章 36 定積分と和の極限、不等式 3 log(n+1)<1+1/+1/27 +: + // <logn+1 n 基本 245,248 演習 254 指針 数列の和 1+ + 1 1 2 3 +...... + は簡単な式で表されない。 そこで, 積分の助けを借りる。 n すなわち, 曲線y= 1 の下側の面積と階段状の図形の面積を比較して,不等式を IC 証明する。 ☑ 解答 自然数んに対して, k≦x≦k+1のとき y x 1 1 1 1 I VO 3k+1 x k 式ア 常に k+1 から k k+1 1 2112=1/2ではない x k+1dx x •k+1 k k+1dx dx Sk 1 k+1 dx x k x ck+1dx よって k+1 k XC k Ck+1 dx x k 0 123…nt x k n-1 n+1 k+1 k k+1 x I 1 VIA: k+1 n Ck+1 n k+1dx k=1Jk n+1 から x k=1k [** dx =f*** dx®-[10gx]"* k=1Jk x 1 = log(n+1) であるから log(n+1)<1+ 式イ A=1,2,…, nと して辺々を加える。 [n+1 0 123… †n x B =logx n-1 © S² • + S²₂² Cn+1 +・・・+ 72 =S+ n+1 y= 1x < 1 1k + 2 3 + n Ck+1 dx Cから x k+1 g h +1 k =logx =logn であるから [10gx] ES** dx="dx =[log]= x x n-1 1 k=1k+1 n_1k+1dx ① < ① k=1Jk x n 1 1 1 + +......+ でん=1,2,…, n-1 として辺々を加える。 <logn 3 n 1 1 1 この不等式の両辺に1を加えて + +: ...+ <logn+1.. ② 2 3 n よって、①,② から, n≧2のとき log(n+1)<1+ 12 + 13 1 n <logn+1

解決済み 回答数: 1
数学 高校生

最後の「よって」からの計算の977という数字が、489を2倍して1引いたものだということは分かったのですが、何故2倍して1引くのかが分かりません!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

8 (66) 第1章 数 列 Think 例題 B1.30 群数列(2) **** 2の累乗を分母とする既約分数を次のように並べた数列について、 1 13 5 7 1 3 5 16' 1 3 2'4'4'8'8'8'8' 16' 16' (1) 分母が2" となっている項の和を求めよ. (2)初項から第1000項までの和を求めよ. 15 1 16'32' * ← p. 手 考え方 分数の数列は、分母と分子に着目する. この数列では同じ分母で1つにまとめる (分母) 2,4,4,8,8,8,8,16,1616, 16, 16, 16, 16, 16, 1個 2個 4個 8個 となっている.つまり, 分母が同じ数である項をひとつの群と考えると, 第2群に 分母が2" の分数が2個あることがわかる.さらに,分子に着目すると, ..... (分子)1|13|1,3,5,713,5,7,9,11, 13, 15………… となっている。 10 解答 (1) 分母が 2 である分数をまとめて第ん群とする数 列を考えると, 1 1 3 1 3 5 7 1 3 5 15 1 24'48'8'8'816'16'16' 16 32 となり、分母が2" の分数は2個あり,分子は初 わけられている 等差数列の和 1. 公差2の等差数列になっているから,その和 は, Sn= n(ate) 2 を利用 1+3+5+…+(221-12-2 (2) 各群の項数は, 1, 2, 48, 16, ・・・・・・より 2" -=2n-2 分子 1+3+5+...... 2" S 第n群までの項数の和は、 1 (2"-1) 2-1 =2"-16 2°_1=511,2-1=1023より 第1000項は第 10群の第489項なので、求める和は第9群までの 和と第10群の第489項までの和となる. k=1 9 よって, 2-2 1 3 '+ + 210 20+......+. 977 SOI+ 1 (29- -1) 2 1 - + 2-1 210 2 2 -489-(1+977) 511 4892 500753 + 2 1024 1024 + (2・2"-1_ 2" (1+2.2-1-1) =22n-2 2 第1000項が第何群に っているかをまず調べる 9 1/2. 公園 22-2は初項 2の等比数列の初項が 第9項までの和 1+3+ ...... +977は, 初項 1,末項 977, 頭数 489 等差数列の Focus 分数の群数列は分母,分子に着目して見抜く 1/6 習 [30] * 数列 (1) 2-3 1-3 '2'3'3 1-2 2-2 +1136- 13 は第何頭か . 3-3 1 3'4 23 4 1 4'4'4'5 5/5 (2) 初項から第1000項までの和 ………について

解決済み 回答数: 1
数学 高校生

書き込んである①②のことが分かりません!誰か解説してくださると嬉しいです。宜しくお願いいたします🙇

B1-46 (64) 第1章 数 列 例題 B1.29 群数列(1) *** ・・・・となるよ 1から順に奇数を並べて,下のように1個 3個 5個 ...... 2 うに群に分け,順に第1群, 第2群, ・・・・・・とする. 13 5 7 9 11 13 15 17 | 19 (1) 第n群の最初の数と最後の数を求めよ. (2)第n群に含まれる数の総和を求めよ. (3)207は第何群の何番目の項か. [考え方] 各群にいくつずつ項が入っているか考える. このように、数列をある規則によっていくつかの群に分けているものを,群数列と 群 項数 数列 1 1 1 2 3 3,5,7 3 5 項数の和 1 1+3 1+3+5 n-1 n 9, 11, 13, 15, 17 2(n-1)-1, O-2, O 2n-1 O+2,..... 1+3+5+....+{2(n-1)-1} 1+3+5++{2(n-1)-1}+(2n-1) 初項 1.公差2の等差数列{az},すなわち,a,=2n-1 が群にわけられている。 群数列のポイント (1)第群の1つ前の群(第 (n-1) 群)までに頂数がいくつあるか考える。 (2)第n群だけを1つの数列として考え, 初項, 項数などを求める. (3) まずは 207 が第何群に属するか考える. 解答) (1) 第群には (2k-1) 個の数が入っているので,第1 群から第 (n-1) 群 (n≧2) までに入る数の個数は, ①なぜい群じゃなくて、 n1 なのか ②この+1はどこから きたのか、 1+3+5+....+{2(n-1) -1} =(n-1){1+(2n-3)} =(n-1)^ ...... ① したがって,第n 群の最初の数は, (n-1)+1=n-2n+2 (番目)の数である. 第n群の最初の数は -2n+2 番目の奇数であり, その数は, 2(n-2n+2)-1=2m²-4n+3 これは n=1のときも成り立つ. 次に,第n群の最後の数を考える。 第1群・・・1個 第2群・・・3個 第3群・・・5個 第n群... (2-1 2(n-1)-1=2 より初項1 2-3 項数 - 等差数列の和 もとの数列{2m- の代わりに i maps//WW FC 第1群から第n群までに入る個数を考えて①より, 2番目の奇数であるから,その数は, 2n2-1 よって、第n群の最初の数は2m²-4n+3, 最後の数は22-1 (2)第群は,(1)より 初項2m²-4n+3.末項 2²-1. 項数 2n-1 の等差数列だから,その和は、 wwwwwwwwwwwwwwww 1/12 (2n-1){(2m²-4n+3)+(2n-1)} (2n-1)(4n²-4n+2) =(2n-1)(2n²-2n+1) 22n+2とす ①と同様にして られるが、①の の代わりに とよい 初項 α,末項 nの等差数列の S=(a+

解決済み 回答数: 2
数学 高校生

解答の計算方法が分かりません!誰か解説してくださると嬉しいです。上から3段目までは分かります 宜しくお願いいたします🙇

目標 2 いろいろな数列 (57) B1-39 Think 例題 B1.26 いろいろな数列の和 (1) **** 自然数 1, 2, ···...,nについて,この中から異なる2つの自然数を選び, その積を計算する.このようにしてできる積の総和S" を求めよ. 第1章 [考え方 たとえば、3つの数a, b, c で考えてみると, T=ab+bc+ca が求める積の総和である。 右の表より. a bc 1 2 3 n a 1 2 3n b 2 2 6. 2n (a+b+c)=a+b+c+2(ab+bc+ca) =d+b+c+2T C 3 3 6 ...3n つまり、T=1/2(a+b+c)-(a+b+c)}となる。 nn 2n3n... wwww www 解答 この考え方を1, 2, 3, .......,nについて用いる. S„= (1×2+1×3+......+1×n) + (2×3+2×4+ ......+2×n) +....+(n-1)×n (上の表の部分の和になって 3つの数a, b, c の場合と同様に考えると, ( 1+2+3+ ...... +n)=(12+2+3+......+n) +2S であることがわかる. (1+2+3+... +n)=(12+2+3+... +m²)+2S より S=1/12 {(1+2+3+…+m)-(1°+2°+3°+…+m)} 考え方を参照 n(n+1) 1)n(n+1)(2n+1) 1 24 2n(n+1){3n(n+1)-2(2n+1)} 1 (n-1)n(n+1)(3n+2) 24 1 12' 1zn(n+1) で くくる. 注〉 自然数 1, 2, n に関して,この中の自然数んとその他の自然数との積の和は, k(1+2+......+n)k と表せる. これを用いると,2×S,=Σ{k(1+2++nk} となる. 注 P=(x+1)(x+2) (x+......(x+n) の展開式は このとき x" の係数は1, 次式となる. "の係数は1+2+ ...... +n=- 1/2m(n+1) となる. では,x" -2の係数はどのようにして求めればよいだろうか. Pを展開する際に, (x+1), (x+2) (x+3), ...... (x+n) のn個の ( 2個の )から数字を, 残り (n-2) 個の ( -2の項を作ることができる. )について, )からxを選んで積を求めれば, したがって,x" -2の係数の総和は、例題 B1.26 と同様に考えればよい. つまり、x-2の係数は 1 24 (n-1)n(n+1)(3n+2) となる. 東習 数列 1, 3, 5, 2n-1 について この中から異なる2項を選び、その積を 1.26 計算する。 このようにしてできる積の総和 S, を求めよ. 2* **

解決済み 回答数: 1