学年

教科

質問の種類

数学 高校生

共通接線、微分の範囲の問題です。 (3)です。 ①D:yがなんでこうなるかわからない ②Dがx軸に接する時なぜ頂点のy座標が0になるのですか? 以上2点についてよろしくお願いいたします。

144 第6章 基礎問 90 共通接線 2つの曲線 C: y=x', D:y=x2+px+g がある. (1)△C上の点P(a, α) における接線を求めよ >(2) 曲線DはPを通り, DのPにおける接線は1と一致するこ のとき,b,g をαで表せ. (2)のとき,Dがx軸に接するようなαの値を求めよ. (2) 2つの曲線 C, D が共通の接線をもっているということです が,共通接線には次の2つの形があります。 (I型) P (Ⅱ型) y=f(x) y=g(x) y=f(x) y=9(x) P 192 アイは よって, (3) D:y= Dがx軸 : g- よって . C 注 a= は,図 である (2)ホ α 違いは,接点が一致しているか, 一致していないかで,この問題は接点がP で一致しているので(I型)になります。 f(エ f'( どちらの型も、接線をそれぞれ求めて傾きとり切片がともに一致すると考え れば答をだせますが, (I型) についてはポイントの公式を覚えておいた方が よいでしょう。 解答は、この公式を知らないという前提で作ってあります。 解答 (1)y=x3より,y'=3x2 だから,P(a,d) における接線は, y-d=3a²(x-a) :.l:y=3ax-2a3 ...... ア 186 ポイン (2)PはD上にあるので,a2+pa+q=a...... ① また,y=x+px+α より y'=2x+p だから, Pにおける接線は,y-d=(2a+b)(x-a) :.l:y=(2a+p)x+a-2a²-pa y=(2a+p)x+q-a² ...... ( DE ) 演習問題 9

解決済み 回答数: 1
数学 高校生

解の存在範囲の問題です。手順1のD>0の時のaの範囲を求めるとき、単純に因数分解できなかったので解の公式を使って因数分解しようとしたらDの中身が負になってしまいました。解答の平方完成でDが常に正だと言うのはわかったのですが、解の公式で求めたaは何を表すのでしょうか。

基本 例題 128 2次方程式の解と数の大小 (1) ①①①① | 2次方程式 x2-2(a+1)x+3a=0が, -1≦x≦3の範囲に異なる2つの実数解を もつような定数αの値の範囲を求めよ。 [類 東北大 ] 基本 126 127 重要 130 2次方程式 f(x)=0 の解と数の大小については,y=f(x)のグラフとx軸の共有点の 位置関係を考えることで,基本例題126 127 で学習した方法が使える。 すなわち, f(x)=x2-2(a+1)x+3a として 2次方程式f(x)=0が-1≦x≦3で異なる2つの実数解をもつ ★ ⇔ 放物線y=f(x) がx軸の-1≦x≦3の部分と, 異なる2点で交わる したがって D>0, -1< (軸の位置)<3,f(-1)≧0,f (3)≧0 で解決。 CHART 2次方程式の解と数の大小 グラフ利用 D, 軸, f(k) に着目 この方程式の判別式をDとし, f (x)=x2-2(a+1)x+3a 3章 13 2次不等式 解答 とする。 y=f(x) のグラフは下に凸の放物線で,その軸は 直線x=α+1である。 THAHO de 方程式 f(x)=0が-1≦x≦3の範囲に異なる2つの実数指針」 解をもつための条件は, y=f(x) のグラフがx軸の -1≦x≦3の部分と, 異なる2点で交わることである。 すなわち、次の [1]~[4] が同時に成り立つことである。 [1] D > 0 [2] 軸が-1<x<3の範囲にある [3] f(-1)≧0 [4] (3) 吹 の方針。 2次方程式についての問 題を, 2次関数のグラフ におき換えて考える。 よって, D>0は常に成り立つ。 ゆえに [1] D={-(a+1)-1・3a=a-a+1=(a-1/2)+3 (*) (+)-(-1<()<3 [2] 軸x=α+1について −1<a+1<3 I+D)-SD(S)\ すなわち -2<a<2 [3] f(-1)≧0から ...... ①のと (−1)-2(a+1)(-1)+3a0 2つもつこと3 5a+30 すなわち a ≧ - 5 になり + Oa+1 3 21 x (一)(1+\2 この問題では, Dの符号, 軸の位置だけでなく,区 間の両端の値 f(-1), f (3) の符号についての 条件も必要となる。 YA [4] f(3) ≧0 からと32-2(a+1)・3+3a≧0 ゆえに3a+30 すなわち a≦1 ③ to) ① ② ③ の共通範囲を求めて -> -2 3 1 2 a 3 5 -≤a≤1 5 注意 [1]の(*)のように, αの値に関係なく、常に成り立つ条件もある。

解決済み 回答数: 1