学年

教科

質問の種類

数学 高校生

例題60で 最後らへんで これはCA🟰BAではなくないですか? 比が等しいと言っているだけと思ったのですが、、💦 何故か分からないので教えて欲しいです

二等分 の外角 DEの 基本 64 5 基本例題 60角の二等分線と比の利用 00000 「Eとする。 DE // BC ならば, AB AC となることを証明せよ。 △ABC の ∠C, ∠B の二等分線が辺AB, AC と交わる点を,それぞれD, CHARTO SOLUTION 平面図形の証明問題 条件を明確にする 平面図形の証明問題では,問題文の平面図形に関する 用語・記号を四角で囲むなどして、 解法の方針を見つ けやすくする。この例題では, ZB の二等分線, ∠Cの二等分線 定理1(三角形の角の二等分線と比) DE//BC ⇒ 平行線と線分の比 を利用して, AB=AC を示す。 直線 CD は ∠Cの二等分線であるから ・① AD: DB=CA: CB ...... 直線BE は ∠B の二等分線であるから AE: EC=BA : BC.∵ 一方, DE // BC であるから ②④から ①③から AD: DB=AE: EC・・・ |CACB=AE: EC CA: CB=BA: BC ...... したがって CA=BA すなわち AB = AC CACB=BABC (4) (1) A B (2) B (3) B A E C C A (0) E B p.325 基本事項 2 D A E (線分比) =(三角形の2辺の比) ◆CA: CB=BA: BC ↑同じ辺 INFORMATION 平面図形の証明問題を解く手順 ① 問題文の平面図形に関する用語・記号を四角で囲む。 ②与えられた条件をもとに図をかく。 場合によっては補助線を引く。 1③ 注意 証明の中で新たにつけ加える線分や直線のことを補助線という。 四角で囲んだ用語 記号から, 適用できる定理がどれなのかを考える。 そして, 図を参照しながら、式を立てる。 187509GRO BAZ Not 329 3章 7 三角形の辺の比,外心,内心、重心

回答募集中 回答数: 0
数学 高校生

(2)△ABCで∠Aおよびその外角の二等分線が直線BCと交わる点をそれぞれD,Eとする およびってなんですか? 答えの図を見る限り内角二等分線と外角二等分線のどちらもしているのは何故ですか? 外角の二等分線しか言われてないのに、、

出版 /www.chart.co.jp/ 328 00000 基本例題 59 三角形の角の二等分線と比 1 AB=3,BC=1,CA=6である△ABCにおいて、<A の外角の二等分 線が直線BC と交わる点をDとする。 線分BD の長さを求めよ。 線分 DEの (2) AB=4,BC=3, CA=2 である△ABCにおいて、<A およびその外 Ip.325 基本事項 2 の二等分線が直線BCと交わる点を,それぞれD, E とする。 長さを求めよ。 CHARTO SOLUTION 三角形の角の二等分線によってできる線分比 (線分比)=(三角形の2辺の比) ・・・・・・ 内角の二等分線による線分比 内分 外角の二等分線による線分比 → 外分 各辺の大小関係を,できるだけ正確に図にかいて考える。 解答 (1) 点Dは辺BC を AB: AC に外分するから BD: DC=AB: AC AB:AC=1:2 であるから BD: DC=1:2 BD=BC=4 よって D (2) 点Dは辺BC を AB : AC に内分するから BD: DC=AB:AC=2:1 1 2+1 ゆえに よって ゆえに DC= また、点Eは辺BC を AB : AC に外分するから BE: EC=AB:AC=2:1 CE=BC=3 -xBC=1 DE=DC+CE=1+3=4 A B B D C JALAB : AC-3:6 WAGHAHA) C PRACTICE ... 59 ② (1) AB=8,BC=3,CA=6である△ABCにおいて, BCと交わる点をDとする。 線分CD E Ha 基本 64 <> ← BD: DC=1:2 から BD: BC=1:1 AB:AC=4:2 基本 △A Eと O AS BAA &&T S=AD 2=38 1=GA_AL 30 STS CHE 解 直線 直編 ① 2 1

回答募集中 回答数: 0
数学 高校生

この問題の解説についてです。 青の波線部がよくわかりません。それ以前の説明はわかったのですが… 波線部は、B P−B Mを表しているのだと思いますが、B Pは、 BMより小さいのに、なぜ引けるのでしょうか?そしたら負になるのでは?とおもいました。

102 重要 例題 57 関数の作成 図のような1辺の長さが2の正三角形 ABC がある。 点P が頂点Aを出発し、 毎秒1の速さで左回りに辺上を1周す るとき,線分 APを1辺とする正方形の面積yを,出発後 の時間(秒) の関数として表し, そのグラフをかけ。 ただし, 点Pが点Aにあるときは y=0 とする。 CHART & SOLUTION 変域によって式が異なる関数の作成 場合分けの境目の値を見極める ① xの変域はどうなるか -0≤x≤6 ② 面積の表し方が変わるときのxの値は何か → x = 2,4 点Pが辺BC上にあるときの AP2 の値は、 三平方の定理から求める。 無料 y=AP2 であり、条件から,xの変域は [1] x=0, x=6のとき [2] 0<x≦2のとき よって y=x2 ↓[3] 2<x≦4のとき 点Pは辺BC上にある。 辺BCの中点をMとすると, BC ⊥AM であり よって, 2<x≦3のとき 3<x≦4のとき AM = √3 ここで ゆえに, AP2=PM2+ AM2 から y=(x-3)2+3 [4] 4<x< 6 のとき 点Pは辺CA上にあり, PC=x-4, AP2=(AC-PC)2 から y=(x-6)2 [1]~[4] から 0≤x≤6 点Pが点Aにあるから 点Pは辺AB上にあって 0≦x≦2のとき y=x2 2<x≦4のときy=(x-3)2+3 4<x≦6 のときy=(x-6)2 グラフは 右の図の実線部分である。 PM=1-(x-2)=3-x PM=(x-2)-1=x-3 1 YA ! ・ 0 I |iii I 1 1 y = 0 AP=x I BM=1 I I I L 1 234 I 6 x B 開く X-4 BP MIC x-2 結局2<x≦4のとき PM=|x-3| ■頂点 (3,3), 軸 x=3 放物線。 ←{2-(x-4)}=(6-x)2 *]=(x−6)² 頂点 (6,0), 軸 x = 6 の放物線。 補 ← x=0, y=0 は y=x² に, x=6, y=0 はy=(x-6) に含まれる [ C

回答募集中 回答数: 0
数学 高校生

(2)の解き方がわかりません。 どなたか教えてください、、

基本例題 28 最短経路の数 右の図のように, 南北に7本, 東西に6本の道がある。 (1) 0地点を出発し, A地点を通り, P地点へ最短距 離で行く道順は何通りあるか。 (2) 0地点を出発し,B地点を通り, P地点へ最短距 離で行く道順は何通りあるか。 ただし, C地点は通 れないものとする。 [類 島根大 ] CHART & SOLUTION 最短経路 同じものを含む順列で考える 右へ1区画進むことを, 上へ 1区画進むことを ↑ で表すとき, 例 えば右の図のように0地点からA地点に最短距離で行く道順は →↑→↑↑ と表される。 解答 (1) 0地点からA地点までの道順は 最短経路の総数は2個, 13個を1列に並べる 同じものを含む順 列の総数に等しい。 (1) O→A, A P と分けて考える。 積の法則を利用。 (2) O→B→Pの道順の数から, O→B→C→P の道順の数を引けばよい。 5! 2!3! -=10 (通り) 西 6! A地点からP地点までの道順は 4!2! よって, 求める道順は 10×15=150 (通り) 5! 4!1! =5(通り) (2) O地点からB地点までの道順は C地点も通れるとした場合, B地点からP地点までの道順は 6! 2!4! -=15 (通り) B地点からC地点を通り, P地点まで行く道順は 2! 1!1! -X1x -=2×1×3=6 (通り) 3! 1!2! よって, C地点を通らずにB地点からP地点まで行く道順は 15-6=9 (通り) したがって, 求める道順は 5×9=45 (通り) 0 -=15 (通り) A 0 北 南 B E P C HD •C東 基本 27 ←→2個, 13個の順列。 A ←→4個, 12個の順列。 積の法則。 図のように D,E地点 を定める。 B→D 2! 1!1! (通り) D→C→E_1(通り) 3! E→P (通り) 1!2!

回答募集中 回答数: 0
数学 高校生

この問題の解き方を教えてください (2)の【4】がよく分からないです あとこの場合分けの考え方も教えてください

三角方程式の解の個数 重要 例題 126 aは定数とする。 0≦0 <2πのとき, 方程式 sin' - sin0 = a について 150g (1) この方程式が解をもつためのαのとりうる値の範囲を求めよ。 (2) この方程式の解の個数をαの値によって場合分けして求めよ。 CHART & SOLUTION 方程式f(0)=a の解 2つのグラフy=f(0),y=a の共有点 sin0=k(0≦0<2π)の解の個数 k=±1 で場合分け 期間① の個数はk=±1 のとき1個; −1 <k<1のとき2個;k<-1,1<k のとき0個 150 解答 (1) sin²0-sin0=a sin0=t とおくと ② ただし、0≦0 <2π から 01≦t≦1...... ③ したがって, 方程式 ① が解をもつための条件は, 方程式 ②③ の範囲の解をもつことである。 1-aduh TOL200 250 x>020 (1) £0) ①とする。 t²-t=a 0 方程式②の実数解は、y=-1=(1-212)-1/24 [2]+ の [3] グラフと直線y=α の共有点のt座標であるから, [4]- [5] 右の図より -sas2 a≤2 seas ttt0=p1200mia ⑩ (2) (1) の2つの関数のグラフの共有点のt座標に注目すると 方程式 ① の解の個数は,次のように場合分けされる。 [1] α=2 のとき, t = -1 から 1個 [2] 0<a<2のとき, -1<< 0 から 2個 [4] ~ [3] α=0 のとき, t = 0, 1 から 3個 [4] [4] -1/ <a<0のとき,0<t</12/12/3 [1]- 1/12/2<1 <t<1 a <1/12 <a のとき a<-₁ [2] 2 の範囲に共有点がそれぞれ1個ずつあり,そ [1] れぞれ2個ずつの解をもつから 4個 [5] a=-21 のとき, t=1/12 から 2個 [6] 10個 10 -1 基本125 YA) 2 1 021 π y=a *** aor aor 2πi 0 t=sin 0 205 -[3] -[5] - [3] 4€ 16

回答募集中 回答数: 0
数学 高校生

一点で交わる時は判別式で求めれないんですか? 重解とは全て接する時で、青のやつは交わってるところがあるから判別式では求めれないと言うことであってますか?

148 ! Litaと円x2+y2=16 について,次のものを求めよ。 重要 例題 96 放物線と 放物線 y= (1) この放物線と円が接するときの定数aの値 (2) 4個の共有点をもつような定数αの値の範囲 CHARTO SOLUTION 放物線と円 共有点 この問題では, x を消去して, yの2次方程式 接点 実数解 4(y-a)+y2=16 の実数解, 重解を考える。 なお,放物線と円が 接するとは,円と放物線が共通の接線 をもつときで,この問題の場合,右の図から,2点で接する 場合と1点で接する場合がある。 解答 (1) y=2x+a から x=4(y-a)・・・・ ① ただし, x2≧0であるから yza ①をx2+y2=16 に代入して 4(y-a)+y²=16 よって y'+4y-4a-16=0.③ [1] 放物線と円が2点で接する場合 2次方程式 ③は重解をもつ。 ③ の判別式をDとすると D=2²-(-4a-16)=4a+20 重解・・・・・・ の中心 0 a=-4 D = 0 から a=-5 このとき,③の重解はy=-2 であるから②に適する。 [2] 放物線と円が1点で接する場合 図から,点(0, 4),(0, -4) で接する場合で [1],[2] から,求めるαの値は a=±4, -5 放物線と円が4個の共有点をもつのは,上の図から, 放物 の頂点が,点(0,-5) と点 (0, -4) を結ぶ線分上 ( 端点を 除く)にあるときである。 って、求める定数aの値の範囲 a=-5 x a=±4 inf. a=4のとき x2+4y-32=0 すなわち(y-4)(y+Bl から,y=4(適), 8 で重解をもたない。 しかし, |x² + y²=16 連立方程式で,yを消去 ると + x² + 整理して JJJ² x ² (x²+48)=0 |= 16 この4次方程式は、2重 x=0 をもつから,点( で接していることがわかる 同様に, a=-4 のときい についての4次方程式を と外 x-16x2=0 1 15 円 C 解 2つ のス する 直糸 よ直 直 よりよい 4 [1 [2 IT

回答募集中 回答数: 0
数学 高校生

階差数列bnの和を求めて(等差数列の和の公式を用いて)anの初項を足して答えを求めてもいいですか?教えてください。

) 日本福祉大] 1. 2, 基本1 いるから, きは、 2 as ak k=1 ■ことから一 式でなく, k ことが多い。 -2.3kと うに! 〒33 初項から 11. 2-3-1) 基本例題 93 階差数列と一般項 次の数列{an}の一般項an を求めよ。 (1)8,15,24,35,48, CHART SOLUTION {an}の一般項(bn=an+1- an とする) わからなければ, 階差数列{6} を調べる (2)5,7,11,19,35, n-1 n-1. n≥2 DE an= a₁ + Σbk k=1 解答で公式を使うときは n ≧2を忘れないように。 また, n=1の場合の確認を 忘れないように!←初項(n=1の場合)は特別扱い (1) 階差数列は 7,9,11, 13, 公差2の等差数列 (2)階差数列は 2, 4, 8, 16, 公比2の等比数列 解答 数列{an} の階差数列を {bn} とする。 (1) 数列{bn} は, 7,9,11,13, ・であるから,初項 7, 公 差2の等差数列である。ゆえに bn=7+(n-1)・2=2n+5 よって, n≧2 のとき n-1 Ran= a₁ + Z (2k+5)=8+2Σk+Z5 (2k+5)=8+2Ek+5 k=1 k=1 p.477 基本事項3 ..... an=n²+4n+3 =8+2.1/12 (n-1)n+5(n-1)=n+4n+3 また,初項は α = 8 であるから、上の式はn=1のときに も成り立つ。 以上により, 一般項an は (2) 数列{bn} は, 2,4, 8, 16, 2の等比数列である。ゆえに よって, n ≧2 のとき 12 an=2"+3 ・であるから,初項2、公比 bn=2.22 地震列の形 重要 99 n-1 2(2″-1-1)=2"+3 an=a₁+2=5+₁ 2-1 k=1 また,初項は α = 5 であるから、上の式はn=1のときに も成り立つ。 以上により, 一般項 αn は 8 15 24 35 48 301=a=210S 差:7 9 11 13 ◆ 「n≧2 のとき」という 条件を忘れないように。 n-1 ← Σk= (n−1)(n−1+1) k=1 2 初項 (n=1の場合)は 特別扱い。 481 5 7 11 19 35 差: 2 48 16 ◆ 「n≧2 のとき」 という 条件を忘れないように。 ◆初項 (n=1の場合) は 特別扱い。 71-4 3章 12 種々の数列

回答募集中 回答数: 0
数学 高校生

至急でお願いします🙏‼️ 赤の部分の方法を教えてください🙏

うる値 座標は ₁ の 2 のとき y=31 である。 CHART & SOLUTION 2次関数の決定 頂点、軸の条件が与えられたときは 基本形 y=a(x-p)^+αからスタート (1) y=a(x-1)2+3 (2) y=a(x+1)+α を利用して係数を決定する。 (3) 定義域に制限がないので, 「x=-3 で最小値-1をとる」頂点が点(-3,-1)で に凸→y=a(x+3)2-1 (a>0) と表される。 解答 (1) 頂点が点(1,3) であるから, 求める2次関数は y=a(x-1)2+3 と表される。 グラフが点(0, 5) を通るから 5=α(0-1)2+3 これを解くと a=2 y=2(x-1)2+3 (y=2x²-4x+5 でもよい) よって (2) 軸が直線x=-1 であるから, 求める2次関数は y=a(x+1)+α と表される。 グラフが2点(-2, 9), (1,3) を通るから 9=α(-2+1)+α, 3=α(1+1)^+q a=2 p. 107 基本事項 3 y=2(x+3)2-1 (y=2x²+12x+17 でもよい) 整理して a+g=9, 4a+q=3 これを解くと a=-2, g=11 よって y=-2(x+1)2+11 (y=-2x²-4x+9でもよい)ゆえに (3) x=-3 で最小値-1 をとるから、求める2次関数は- y=a(x+3)2-1 (a>0) (I と表される。x=1のときy=31 であるから (1) 31=α(1+3)^-1 これを解くと これは α>0 を満たす。 よって • RACTICE 68② 次の条件を満たす2次関数を求めよ。 ■ ) グラフの頂点が点 (13) で,点(-1, 4) を通る。 グラフの軸が直線x=4で2点 (21) (5-2 ← x=0 のときy= ←5=α+3 から。 x=-2のとき x=1のとき 辺々を引くと よってa=- 9=9-(- 最小値をもつ 注意 y=a(x- 形を最終の答え なお,本書では 開した y=ax 形も記した。

回答募集中 回答数: 0