学年

教科

質問の種類

数学 高校生

はじめになぜa>0としたのか 最後の行の-b ゆえにb=0になるところがわかりません。

問題 120 極限と係数決定 [2] 次の等式が成り立つように,定数a, 6の値を定めよ。 lim{v/x-2 -(ax+b)} = 0 解法の手順・ Action 根号を含む関数の不定形の極限は,分子または分母を有理化せよ FRAL1 +Enz ≦0 のとき, 与えられた極限は∞に発散するから a>0 ↑ 発散しな いように!! X→∞ ・1 分子の有理化を行う。 2 lim X→∞ ゆえに √x²-2-(ax+b) _{√x² − 2 − (ax+b)}{√x² − 2 + (ax+b)} √x²-2+(ax+b) (1-α²)x2-2abx- (2+62) √x²-2+(ax+b) 分母の最高次の項で,分母・分子を割り、この極限が収束する条件を考える。 32の結果と極限値からα, b の値を求める。 b=0 (1-a²)x-2ab- b 今の中で 顔ともはズが 女になる √1-2 x² +a+ - x 「よってx∞のとき, これが収束する条件は 1-a² = 0 a>0 より α = 1 であり,このときの極限値は 2+6² -26 x 2 x² +1+ 2 +62 したがって Pointly 近線 b x a=1,6=0 x = この - 26 2 2²-2-(ax+b)^ ✓²-2+ax+b) = -b →例題117, 119 <lim√x-2=8, a < 0 のとき lim{-(ax+b)}= X00 x →∞ 例題120 の結果は、右の図のように,y=√x-2 と直 線y=x との差が、xの値が限りなく大きくなるにした がって限りなく0に近づくことを示している。 すなわち = =x²-2-2²-2ab5分子を有理化する。 a=0のとき lim{-(ax+b)} = -6 x →∞ よって, a≧0のとき + (ax+b) lim{√x² − 2 − (ax + b)} = 00 (1-a²x²-2abx+6x→∞より,x>0と考 えて,分母, 分子をxで √x²=2+ (0216) 割る。 =8 分母のみの極限値は 2 YA lim_ X→∞ y=x +a+ = 1+a であるが, a>0 より 0 にならない。 b x -2 3章 関数の極限 10

解決済み 回答数: 1
数学 高校生

集合と命題の問題なのですが、151番の(1)(2)(3) と152番の解き方が分かりません。どなたか分かる方解説してください!

110 151* (1) a,bは有理数とする。 √5 が無理数であることを用いて 命題 Ta+6√5=0→a=0かつb=0」を証明せよ。 &Oと仮定する。 このとき at&s=① を変形すると 15-0 Q.bは有理数であるから、①の右辺は有理数であり 等式①は厚が無理数であることに矛盾する したがってb:0 atb55=0にb=0を代入するとa=0 よって与えられた命題は真である (a+3)+(6-5)√5=0 を満たす有理数α, b の値を求めよ。 a,bが有理数ならば、a+3,65はともに有理数 である。よって(1)で証明したことから(a+3)+(b-5)55:0 を満たすとき a+3=0, b-5:0 ゆえに a=-3, b=5 (3) (√5-1)a+b/√5 = 2 + √5 を満たす有理数a, b の値を求めよ。 等式の左辺を展開して整理すると → 例題 38 (-a-2)+(a+b^-1)55=0 a,bが有理数ならば、-a-2,a+b-1はともに 有理数である。よって(1)で証明したことから、有理数a,bが (-a-2)+(a+b-1)55:0を満たすとき -a-2=0 a+b-1=0 ゆえに b=3 BClear a=-2 152x, y, z は実数とする。 次の命題を証明せよ。 x2 >yz かつye<xzならば, xキリである。 xyzかつy<xzならばx=yであると仮定する xyzにx=y を代入すると y² > YZ O y2<xzにx=y を代入すると y² < YZ.. ①と②は矛盾する よってxxかつくってならばメキまである

回答募集中 回答数: 0
数学 高校生

なぜ、一番左と真ん中を比較して=2/3(n+1)√n+1になればいいんですか?

例題 243 定積分と不等式 [2] 自然数nに対して,次の不等式を証明せよ。 Action 数列の和の不等式は, 曲線とx軸で囲まれた部分と長方形の面積の和を比較せよ ....... 1/y=√x が増加関数であることを確認する。 2 y=√xとx軸で囲まれた部分と長方形の面積の和を比較する 32 の不等式に k = 1, 2, ..., n(n+1) を代入し, 辺々を加える 解法の手順・・ 2 ² n√n <√ [ + √² + √√3+ ··· + √ n < 1/3 ( n + 1 ) √n + I 解答 x≧0 y=√xは増加関数である。 自然数んに対して, k-1<x<んのとき √k-1<√x <√k よって .k **b5 √k=1</² √ √xdx < √k すなわち ここで √ √k-1dx <f", √x dx <S", √ dx k-1 k-1 k-1 n+1 ck √k=1<f",√xdx *) √k=1<2/²₁ √x dx より ここで n+1 k=1 n+1 2 √x dx = √ √x dx + √ √x dx + ... + √x dx S k=1k-1 In xx √ √x dx < √k xD k-1 n+1 en+1 2 2 = " " " √x dx = ²/3 [x√x]" " = }} (n+1)√n+1 3 10 2 £₂€ √[+√2+√3+...+√n < ² (n+1)√n+ 1 - ① ... 3 •n+1 k n #₂ √x dx < Ž√ k k=1k-1 k=1 n ・k •n 2", √x dx = √ √x dx + √ √x dx + ... + √ √x dx k=1Jk-1 n-1 2 = ["√x dx = /²/ [x√x]" = ²/3 n√n. 3 したがって, ①, ② より 2 *₂€ ²/² n√n<√[+√² + √3+ ... + √ñ よって ²/² n√n <√ [ + √2 + √5 + . . . + √ñ < ²/² (n+1)√n+ 1 映習 243 2 以上の自然数nに対して,次の不等式を証明せよ。 log(n+1)<1+= 1+1 yl √E √k- √k-1 例題242 両辺に y=√√x 両辺に k-1 k x $11 k-1 k 面積の大小関係を表して いる。 √k< k=1, 2, ..., n+1 を代入して辺々を加える。 k=1,2,..., n を代入して辺々を加える。 例題 次の (1) AC 解法 合 LE (1)

回答募集中 回答数: 0