学年

教科

質問の種類

数学 高校生

問2のq’の式の分母に2かけてるのはどうしてですか

この日, もつことになる。 がαより引き継がれやすいと, 世代を重ねるごとに変動をしながら, Aの遺伝子頻 度が大きくなる傾向になると考えられる。 153 問1 BB の個体: 36% Bbの個体: 48% bbの個体: 16% 問2 0.29 問3 41個体 Key Point 自然選択が働くと、特定の遺伝子型の個体が取り除かれ,ハーディー・ワインベルグの法 則は成り立たない。 解説 問1 遺伝子Bの遺伝子頻度をか. 遺伝子の頻度をg (p+g=1) とすると,この集団に おける遺伝子型の頻度は次の式で求められる。な (pB+qb)²= p²BB+2pqBb+q²bb とは いる。 よって, 遺伝子型 BB の個体の割合は2=0.62=0.36, 遺伝子型 Bb の個体の割合は2pg=2×0.6×0.4=0.48, 遺伝子型 66 の個体の割合は4=0.4=0.16 となる。 問2bbの個体がすべて取り除かれた後の, 対立遺伝子の遺伝子頻度を′とすると. BBの個体の割合が 0.36, Bb の個体の割合が 0.48 であったので(sp+Mo 0.48 g′'= (0.36 +0.48) ×2 0.48 0.84×2 =0.285≒0.29 となる。 変化後の遺伝子頻度で自由交配が行われれば, ハーディー・ワインベルグの法則から次 世代における遺伝子頻度は変わらないので,bの遺伝子頻度は0.29である。 問3 対立遺伝子の遺伝子頻度が0.29 なので, bb が取り除かれた後の対立遺伝子Bの 遺伝子頻度かは、 al p'=1-0.29=0.71 st Bb の個体の割合は2pg′=2×0.71×0.29=0.4118 ≒ 0.41 総個体数が100個体であれば,B6の個体数は100×0.41=41)

回答募集中 回答数: 0
数学 高校生

vision questⅡ English expression hope70ページ preview 1.date&time 2.numbers(sizes,measurements,etc) 3.prices&Phone numbers listening task 1.... 続きを読む

140 // TIT Activity for Communication 3 Preview Listen to the sentences below. 1 Dates & Times Listening for Numbers the on Enio 1. "The movie starts at 5:20. Can you be ready in ten minutes?" "OK. I'll try." 2. "What time is it now?" "It's 11:30." basalaila awohlsw 3. I have an appointment with the dentist this Thursday, the 10th. M 4. "When does school begin?" "It begins on April 8th." 5. Our school was established in 1965. 6. My family has lived in this town since 2005. 2 Numbers (sizes, measurements, etc.) 1. Two thirds of the students come to school by bus. 2. One mile is about 1,609 meters. 3. The city has a population of about 2.5 million. 4. The temperature dropped to 12°C. 5. APA Air Flight 125 for London will be departing from Gate 14 at 10:15. 3 Prices & Phone numbers 1. The price of this bag is $27.89, but you can have it at 10 percent off. 2. What would you do if you won 100 million yen in a lottery? 3. "A hamburger and a cola, please." "That'll be £2.99." 4. I need €20, but I'm €5 short. 5. My phone number is 612-750-5613. Listening Task Listen to the conversations and choose the correct answers. 1. How much of the earth's surface is covered by ocean? 1 more than one third more than one fourth 監督署 ER 70 3 more than two thirds 4 more than two fifths 2. When were the Olympic Games held in Atlanta? 1 in 1966 2 in 1969 3. How much did the dress cost? 1,100 yen 2 1,800 yen 3 in 1996 4 in 1999 S 8,000 yen ③ 13,000 48,800 yen bluros ④ 30,000 about 200,000 4. How many people can the concert hall hold? ① 1,300 ② 3,000 5. How many people live in the city? ①about 2,000 2 about 12,000 3 about 20,000 ① 207-7300 2207-7003 ③ 702-3300 6. What's the phone number of the restaurant? The number is 510- ④ 702-3003

回答募集中 回答数: 0
数学 高校生

このノートの(4)(ii)で、 xとyの最大公約数をgとすると、なぜ g=2^a×3^b×5^c×11^dになるんですか?

ET D Lake A P B BO [D 13 60 A A 15 C 8 B 接弦定理より∠ABD=∠ACBであり、 <Aは共通であるから、 の最大公約数をgとすると、 (i) x x Y or (i)よりa,b,c,dを Osas3, 08652.0 C≤2.0d₤17 満たす整数として d g=2x30x5x119と表せる。 acyの正の公約数の総和2604 よって、 △ABDCACBである。 AB:BD=AC:CB はgの正の公約数の総和に 楽しいので、 であるから、8:BD=15:13 15BD=104 2604=(1+2+…+2)(1+3+-+36) (I+ 5 +---+59) (I+ (1 +- +11) BD=104 である。Osa3.0/2.02. osd/1より、 (4)を正の整数とし、y=19800とする。 となの正の公約数の総和は 2604である。 (ⅰ) yを素因数分解 2119800 2 19900 214950 312475 31 15 +13 X12 45 15 62 31 31825 51275 5155 ( y=28.38.5:1 (ii)xとyの最大公約数 195372 yの公約数の総和 (2+2+2+2))(3+3+3)(5°+5+5) × (11°+11) 372 =(1+2+4+8)(1+3+9)(1+5+25)(1+) '9'0 13651=15×13×31×12 585 72'5'40 212604 211302 31651 71217 31 (+2+…+2=1.1+2,1+2+2+1+2+2+2 =1.3.7.15 (+3+430=1.13.1+3+3=1.4.13 1+5+…+5=1.1+5,1+5+5=1.6.31 1+1+パントけ11=1.12であり 2604=223.7.31 であるから、 ②の右が7の倍数であるにはa=2が 必要で、③のなが3の倍数であるにはC=2 が必要である。このとき③は 22×3×7×37×(1+3+39)x3x(HH-11 すなわち12=(1+3+…+3%)(1+11+..+ となる。「ほたは4または13」と「ほまたは12」の積 が12となるのは1×12のときのみなので、 b=0,d=1である。以上より、 g=23×3×5×11=1100

回答募集中 回答数: 0
数学 高校生

サの部分がわからないので解説して頂きたいです。

000076 76 sin0, cos0 の2次式の最大・最小 a, b, cは正の定数とする。 0 2 の範囲で定義された2つの関数 S(0)=(1-√3a)sin' 0 +2asincos0+ (1+√3a)cos'0g(0)=bsinc0+b について (1) S(0) を a, sin20, cos20 を用いて表すと S(0) T lasin 20+ + ウ イ と変形できる。 よって,f(8) は のとき最大値 A = [エオ (2) g (0) の最小値が0であるとき, cの値の範囲は cサである。 このとき,さらにS(0) g(8) の最大値と最小値がそれぞれ一致するならば a+ キ 0= T ■ク のとき最小値ケ コαをとる。 b = セ + ソ タ a = ス チ である。 解答 (1) f(0) 変形すると Key 1 f(0)=(1-√3a) 1-cos20 2 +2a- sin20 2 +(1+√3a)1+ cos20 Key 2 2 = asin20+√3acos20+1= a(sin20+√3 cos20) +1 =2asin(20+ /25) +1 f(8) = (sin'0+cos'0) +a2sincos0 +3 a(cos20-sin³0) と変形し 2倍角の公式 2sincos0 = sin20 cos' 0 -sin^0= cos20 を代入してもよい。 π のとき ≤20+ 3 13 4 S より √3 2 α > 0 より ≤ sin(20+) 1 -√3a+1≦2asin (20+4 +1 ≦ 2a+10 よって, f(8) は 1 02 π π 20+ すなわち 0= 33 = 243 のとき最大値 24 +1 12 π 20+ (2)g(8)=0 のとき 60 より sinc0 = -1 0≧0 の範囲で sinc0 = -1 となる最小の8の値。 は すなわち 0 のとき 最小値1-3a 2 D bsinco = -b 3 c>0より, clo= となり 3 8₁ = 2 となるから 12c <10+(-1)=( よって,OSTの範囲で g (8) の最小値が0 となるとき c0 であるから, 3π 2c より c≥ 3 2 f(8) g (0) の最大値と最小値がそれぞれ一致するとき 2α+1=26 かつ 1-√34=0 これを解いて a= √3 3+2√3 b = 3 6 √3 3 三角関数 ( 最大値は (2)=6(sin+1) +1 = 26 攻略のカギ! Key 1 psin0 + gsincosd+rcos'0 は, sin 20, cos20 で表せ sind と costの2次式 f(0) = psin'0+gsindcosd+rcos' の最大・最小は, 2倍角の公式から得られ る下の3つの等式を利用して, f(0) を sin20 と cos20 の式で表してから、 合成して求める。 sin20 sincost= 2 sin² = 1-cos20 2 1+cos20 cos2 0 = 2 2 asin + bcos0 は,rsin (0+α)の形に合成せよ 35 (p.149)

回答募集中 回答数: 0
1/40