学年

教科

質問の種類

数学 高校生

287番の問題についてです。 someの対比として、othersが使われるのは理解できたのですが、この文では賛成したor賛成してない、の二択なので、the others(選択肢にはないですが…)でも良い気がするのですが、どう思いますか? もし選択肢にあったらどっちを選んでも... 続きを読む

haisance province 36 問題演習 1 STEP それぞれの空所に入る最も適切なものを 選択肢から1つ選びなさい。 285 I have two brothers. One is a fireman and ( ) is a police officer. 000 1 others ② any ③ the other ④ another SENE 185 ③残りの1人は... 兄弟が「2人」とあり、1人目はOne なので、 「残りの1人」は誰だか特 認識できるため、③ the other を使います。 286 This photograph of my friend is not very good. Let me show you 000 訳 僕には2人兄弟がいる。1人は消防士でもう一人は警察官だ。 ( 神戸学院大学) 286 (2) ( ) one. 1 about ③ simple ② another ④good 「もう一つ」を表すには? 何枚かある写真のうちの)もう1枚を見せてあげる」 というこ another を選びます。 「たくさんある中の1つ」 は、anを another = "an + other" でしたね。 この「もう1つ追加」とい another は入試頻出です。 和訳私の友達のこの写真はあまりよくない。もう1枚のを見せてあ (中京大学) 287 000 Some board members agreed with the president's proposal but ( ) 287 (3 didn't. ① another ③ others ② other ④ the other If you need an English dictionary, I will lend you ( 288 000 (1) some )this -89 Thought a cookbo (愛知学院大学) 2 one ④any (拓殖大学) the other と others の区別 文頭Some board members agreed 「賛成した役員もいる」 しなかった役員もいる」 には ③ others を使います。 ④ the ot 1人が賛成しなかった」 と断定してしまうことになります。 成でも反対でもない人」がいることを考えないといけないの 和訳社長の提案に賛成した役員もいたが、そうでない役員もいた 288 「同種類」を表すには? 空所にはan English dictionary という「不特定」の名詞を受 ります。 この[不特定」の感覚は「同種類」とも言えます。「同 というときに② one を使うのです。 和訳もし英語の辞書がいるなら、貸してあげるよ。 it one の区別 です。 ここでは、決し そのcookbo

未解決 回答数: 1
数学 高校生

1枚目の11番のところのtheyと21番のthisはそれぞれ何を示しているのか教えてください。 2枚目の17番のweを示しているのは誰ですか。 3枚目の6番のsheはだれを示しているのか。 至急お願いします

Date 1. English as a ( 19 2 ) to one ( English )( 3 native English speakers ( 4 only a ( 5 English is now used more often/ 6 between ( )-(. most native speakers /tadé// )( .)/ ) of the world's English speakers. // ) speakers / 11 they 12 The English( 13 is called English as a lingua franca / 14 or ELF.// LESSON 4 than between ( 8 For example,/ 9 when business people from Japan, China, and Korea / 10 have a meeting,/ ) speakers. // 15 In using ELF,/ 16 you should speak clearly and simply.// 17 You should also ( ) on ( 18 For example, / ), / ) their business in English. // Xin this ( 20|( 21 This is not a problem/ 22 because we can understand both.// )(ELF) 23 However, / 24 if you say /dadér/ or /tatér/, / 25 no one will understand what you say.// 26 This example shows us/ ) some usually say /tadáw/// →このような例とは? 27 that consonants are more important than ( today as DL Part 3 どのような状況? ). // ) 11 ネ法 Japanese 国際共通語としての英語(ELF) ある概算によると 英語母語話者[ネイティブスピーカー] は 占めるにすぎません 世界の英語話者のたった4分の1を 今では、よく英語が使われています 非母語話者[非ネイティブスピーカー] 間 のほうが 母語話者 [ネイティブスピーカー] 間よりも たとえば 日本,中国, 韓国の実業家が 会議をするとき 彼らは英語で彼らのビジネスについて話 し合います このような状況で話される英語は 国際共通語としての英語と呼ばれます またはELFと ELFを使うときは はっきりと, 簡潔に話すべきです また、子音にも注意を集中させるべきで す たとえば たいていの母語話者[ネイティブスピーカー] は todayを/tadér/ と発音します 一方で、 普段は/tadá / と言う人もいま す これは問題ではありません 私たちは両方とも理解できるので しかしながら もし/dadér/か/tatér/ と言えば あなたの言うことはだれもわからないで しょう この例は、私たちに示しています 重要であることを

未解決 回答数: 1
数学 高校生

207.3 Q.極値を持たないためにはどうすればいいか? →単調増加または単調減少のグラフなら極値を持たない →つまりf'(x)の符号が変わらない →つまり実数解を1つだけ持つか1つも持たないとき →つまりD=0またはD<0 →D≦0 と記述の方針は理解できていると思うので... 続きを読む

たない。 に変わる。 の値をもとの = (変数4個で笑 であるから, る)。 う, 十分条件でお 確認。 の符号の変化を、現 示している。 基本例題207 3次関数が極値をもつ条件, もたない条件 ①①①① (1) 関数f(x)=x2+ax2が極値をもつとき,定数aの満たすべき条件を求めよ。 (2) 関数f(x)=x6x2+6axが極大値と極小値をもつような定数aの値の範囲 を求めよ。 (3) 関数f(x)=x+ax²+x+1が極値をもたないための必要十分条件を求めよ。 ただし, aは定数とする。 AGUS 指針3次関数f(x) が 極値をもつ ⇔f'(x) の符号が変わる点がある ⇔f'(x)=0 が 異なる2つの実数解をもつ ⇔f'(x)=0 の判別式 D> 0 から、上の例で の関係により 解答 (1) f'(x)=3x2+2ax f(x) が極値をもつための条件は、 f'(x)=0が異なる2つの実 数解をもつことである。 3x2+2ax=0 の判別式をDとする -=a²-3.0=a² と D>0 ここで ゆえに, d²>0 から a = 0 D 154 (2) f'(x)=3x²-12x+6a=3(x2-4x+2a) ロ)+(8+ f(x) が極大値と極小値をもつための条件は,f'(x)=0が異 なる2つの実数解をもつことである。 Altells よって, x2-4x+2a=0の判別式をDとすると 1=(-2)^-1・2a=4-2a から, 4-2a>0より (3) f'(x)=3x2+2ax+1 f(x) が極値をもたないための必要十分条件は,f'(x) の符号 が変わらないことである。ゆえに,f'(x) = 0 すなわち 3x2+2ax+1=0 実数解をもたない。 よって、①の判別式をDとすると ここで ゆえに (a+√3)(a-√3)≦0 ...... 4 D≤0 D=q²-3・1=(a+√3)(a-√3) JERS 極大 y=f(x) x=α ① は実数解を1つだけもつかまたは 4/4-a)=4 £57 ...... 基本 201206 重要 210 778 の係数)>0のとき IV x=B a 極小 3次関数が極値をもつとき, 極大値と極小値を1つずつ もつ。 x(3x+2a)=0 から x=0, a≠0 よって としてもよい。 (3) 2 3 (D>0 ) · |- · - (- / -) - a<2 D=0 (*)CO DO a y=f'(x)) y=f'(x) / y=f'(x) GREY & | (*) D<0は誤り。 x 32 E 3 木 1

未解決 回答数: 1
数学 高校生

29.3 記述はこれでも大丈夫ですか??

52 KONGRE 基本例題 29 絶対値と不等式 8X①000 次の不等式を証明せよ。 (1) |a+b|sa|+|bl(2) la|-|b|≤|a+b)(3) |a+b+c|≤|a|+|b|+| 基本28 重要 30 de+pas 指針 (1) 例題 28 と同様に,(差の式)≧0 は示しにくい。 辺 |A=A2 を利用すると, 絶対値の処理が容易になる。 そこで A≧0, B≧0の A≧B⇔A'≧B'⇔A'-B'≧00mm) の方針で進める。また,絶対値の性質(次ページの①~⑦) を利用して証明してもよ (2),(31) と似た形である。 そこで, (1) の結果を利用することを考えるとよい。 CHART 似た問題 1 結果を利用 方法をまねる 解答 口(1)(|a|+|6|)²-|a+b=a²+2|a||6|+b²-(a²+2ab+b2) =2(abl-ab)≧0 この不等式の辺々を加えて (2)(a よって la+b≧(|a|+|6|) |a+b≧0,|a|+|6|≧0から |a+b|≦|a|+|6| この確認を忘れずに。 別解一般に,-|a|≦a≦al, -16≧0≦16 が成り立つ。|4|≧4,|A|≧-A から -|A|≦a≦|A| −(|a|+|b|)≤a+b≤|a|+|b| したがって |a+6|≦|a|+|6| (2) (1) の不等式でa の代わりに a+b, の代わりにと おくと de+nas (a+b)+(-6)|≦|a+6+1-6| よって |a|≧|a+6|+|6| [別解 [1] |a|-|b|<0のとき a+b≧0であるから,|a|-|6|<|a+6|は成り立つ。 [2] |a|-|6|≧0のとき METOD |a+bP-(|a|-|6|)²=a²+2ab+b2-(²-2|a||3|+62) =2(ab+labl)≧0 ゆえに |a|-|6|≦la+b1 よって (|a|-|6|)≦la+b2 |a|-|6|≧0, la +6|≧0であるから よって (1) [1],[2] から lal-lb|≤|a+b| (3) (1) の不等式での代わりにb+c とおくと la+(b+c)|≦|a|+16+cl la+b+cl≦|a|+|6|+|c| どのよ ≦|a|+|6|+|c| 不 oktob SARA ◄|A|²=A² |||ab|=|0||0| 10-357 20 TATAR -B≤A≤B ⇔ [A]≦B ズーム UP 参照。 lal-1b|≤|a+b||+o)S\ |a|-|6|<0≦|a+6 [2] の場合は,(2) の左辺 右辺は0以上であるから、 (右辺(左辺) 0 を示 す方針が使える。 BY 05 (67)S 1930 次の不等 不等式√²+ 62 +1 √ x2+y2+1≧lax+by+1を証明せよ ** (1) の結果を利用。 (1) の結果をもう1回利用。 (16+cl≦|6|+|cl)

回答募集中 回答数: 0
1/12