学年

教科

質問の種類

数学 高校生

アとウの問題の最後って逆の確認はしなくていいんですか?

8 恒等式 - (ア) 恒等式 4+7x3-32-23-14 =a+bx+cx(x-1)+dx(x-1)(x-2)+ex(x-1)(x-2)(x-3) が成り立つとき, 定数ae の値を求めよ. (九州産大・情報科学, 工) (イ) 次の式がxについての恒等式になるように,定数a, b, c の値を定めなさい。 x3+2x2+1=(x-1)+α(x-1)2+6(x-1)+c ( 流通科学大) (ウ) x+y=1を満たすx, yについて,ax2+bxy+cy2=1が常に成り立つように a, b, c を定めよ. (龍谷大・理工(推薦)) 係数比較法と数値代入法 多項式f(x) g(x)について, f (x)=g(x) が恒等式になる条件を とらえる主な方法は,次の①と②の2つである. 1 f(x)とg(x)の同じ次数の項の係数がすべて等しい. ② f(x), g(x) の (見かけの) 次数の高い方をn次式とするとき, 異なる n+1個の値に対して,f(x)=g() が成り立つ. x-pで展開 (イ)の右辺を 「x-1について展開した式」 というが, どんな多項式も につい て展開した式として表すことができる. この形にすれば (x-p)2で割った余りなどがすぐに分かる. (イ)を右辺の形にするには, 左辺の各項を,r={(x-1) +1}などとして展開すればよい. 等式の条件 1文字を消去するのが原則である(本シリーズ 「数Ⅰ」 p.16). 解答豐 (ア) 与式の両辺にx=0を代入して,a=-14. αを移項し両辺をxで割って, x3+7x2-3x-23 =b+c(x-1)+d(x-1)(x-2)+e(x-1)(x-2)(x-3) 両辺に x=1,2,3,0を代入して, -18=6,7=b+c,58= 6+2c+2d, -23=b-c+2d-6e b=-18,c=25, d=13, e=1 (イ)x+2x2+1={(x-1)+1}3+2{(x-1)+1}2+1 ={(x-1)+3(x-1)2+3(x-1)+1}+2{(x-1)2+2(x-1)+1}+1 =(x-1)+5(x-1)2+7 (x-1)+4 (α=5,b=7,c=4) (ウ) y=1-xであるから, ax2+bx (1-x)+c(1-x)2=1 これがェによらず成り立つから,r= 0, 1, -1 を代入して, c=1, a=1, a-26+4c=1 .. a=1,c=1,6=2 注 (ア) ①x=1を代入して♭を求め, bを左辺に移項し両辺をx-1 で割る'代入'と '割り算’を繰り返して求めることもできる. (イ)与式にx=1を代入し,c=4. 両辺をxで微分して, 3x2+4x=3(x-1)2+2a(x-1)+b.x=1を代入し, 6=7. (以下略) ・① 多項式の恒等式が両辺ともにェ を因数に持てば, 両辺をェで割っ た式も恒等式. e=1であることは、 元の式の両 辺のの係数を比べることでも 分かる.このような考察をして ミスを防ごう. ← (x+y)²=1となる. 次にx=2を代入してcを求め,c を移項して2で割る. ←代入と微分"を繰り返して 求めることもできる. 波調

回答募集中 回答数: 0
数学 高校生

赤い線が引いてあるところで、xで割るのにx=0の時と0でない時で場合分けしていないのはなぜですか?教えてください!

例題 221 定積分と すべての実数xについて, 等式 xf(x)=x+2 f(x) を求めよ。 思考プロセス « Re Action 上端 (下端)が変数の定積分は, 定理の利用 y=f(x) とおくと ★★☆☆ +2 ff(t) dt を満たす関数 af*f(t)dt=f(x) を利用せよ 1910 Go Ah 微分方程 でその現 探究 例題 薬を血 さで代 をxで微分する + xf'(x) =1+2f(x)⇒y+xy'=1+2y f(x) し、 微分方程式 にx=1 を代入 1・f(1)=1+2ff(t)dt 0 () iA 解 xf(x) = x+2 2* ƒ (t)dt ... ..① とおく。 163 よって, ②より 両辺を積分すると=fa ①の両辺をxで微分するとf(x)+xf'(x) =1+2f(x) dy y = f(x) とおくと x =y+1 dx ... ② 関数 f(x) はすべてのxについて定義されており, 定数関数 f(x) = -1 は等式① を満たさないから, x(y+1) ≠0 としてよい。 1 dy 1 y+1dx x 両辺をxで微分して微分 方程式をつくる。 dx f* f (t)dt = f(x) リ Ac 関数 f(x) = -1 のと (笑)き、①の左辺は x 右辺は 2∫(-1)dt 脚生 (1) 思考プロセス (1) If (2) はっ 血中 [条 条件 x+2 log|y+1| = log|x|+Ci =x-2(x-1) =-x+2 これより |y+1| = elog|x|+C1 = eCielog|x| = となり, f(x)=-1 は ① を満たさない。 よって y=±ex-1 C ここで,C=±e とおくと y=Cx-1(C≠0)ol 例題 1=C・1-1 より C = 2 したがって,求める関数 f(x) は f(x) =2x-1 Point... 微分方程式と初期条件 B4 また, ① に x = 1 を代入すると f(1) =1であるから, らf(1)=1 ff(t)dt = 0 であるか t (2) t 微分方程式の一般解は, 任意定数を含む 曲線群を表すが、これらの曲線のうち 点(x1, 21) を通るもの、すなわち x= x1 のとき y = yı 3) という条件を満たす特殊解は,いくつかに限定される。 微分方程式に対するこのような 条件を初期条件という。 ■ 221 すべての実数xについて L チャレンジ (7)

解決済み 回答数: 1
数学 高校生

この問題では立体Aの形が分からないと解けない問題で合ってますか?このような問題では立体の形は分からなくていいと思っていたので分からなくなってしまいました。回答よろしくお願いします。

388 (2) 切り口を考えたいが, 立体Bはイメージしにくいから 立体Aを「z軸のまわりに回転させる」→それを「平面 z=tで切る」 見方を変える 例題 21. xyz 空間において,D={(x, y, z1≦x≦2,1≦y ≦ 2, z = 0 } で表 された図形をx軸のまわりに1回転させてできる立体をAとする。 (1) 立体 A の体積VA を求めよ。 (2) 立体Aを軸のまわりに1回転させてできる立体Bの体積VB を求 めよ。 (名古屋大 改) ReAction 回転体の体積は、回転軸に垂直な切り口の円を考えよ 例題199 切り口の図形Eは図1の長方形 PQRS となる。 平面 z = t と軸の交点をH, 線分PSの中点をM とすると ゆえに PH = √PM2+MH=√8-1 S(t) = PH-π・12 =(√8-12)² -=(7-12) S 1 点Hから最も遠い点は P, 点Hから最も近い点 はNであるから S(t) = (半径PH の円) (半径NHの円) PM=√22-2 特講 (1) t1のとき 図1' 平面 z=t における図 図2′ 平面 x=2 における図 Q P 12 St P R S' +M z=tr イメージしにくい。 M HN x R -21- 0 立体A を「平面 z = t で切る」→それを「2軸のまわりに回転させる」 AP H 12y P.S. -1 イメージしやすい。 場合に分ける 21 HACS (2 (ア)断面が長方形1個 (イ) 断面が長方形 2個 切り口の図形Eは図1' の tの値によって, z=t 2つの合同な長方形 PQRS, 断面の形が異なる。 H• P'Q'R'S′ となる。 N H x 線分 PP′, QQ' の中点を M, Q' RR 0 0 z=to N とすると -2-1 図3′ 平面 x=1 における図点Hから最も遠い点は 0 12 y P. 点Hから最も近い点 はRであるから S(t) (半径PH の円) (半径RHの円) y 22120) 03-12-09 PHPM² + MH² PM=√22-12 √√8-12 02 4章14 体積・長さ,微分方程式 Action» 切る平面によって断面の形が変わるときは,図を分けて考えよ - RH = √ (1) 立体 A は,底面の半径が2で高 さ1の直円柱から, 底面の半径が 1で高さが1の直円柱をくり抜い た立体である。 y y D 2 2 1 1 02 よって, その体積は O 0 1 2 VA=2°z.1-12.1 = 3π √RN²+NH² √2-12 RN=√1-2 ゆえに (2) 立体Aを軸に垂直な平面 z=tで切ったときの, 切り口の図形をEとし,図形Eをz軸のまわりに1回 転させてできる図形の面積を S(t) とする。 立体Bはxy 平面に関し 対称である。 no (ア)1st ≦ 2 図1 平面 z=t における図 図2 平面 x=2における図 2 H・ P S IM P St z=t, 2 t 2 0 HN M x -2-1 0 1 12y S 2 S(t)=PH-RH 2 = (√8–1²)² -π(√2–1²)² = 6 (ア)(イ)より、求める立体Bの体積は VB =S(t)dt = 2*S(t)dt -26x dt + (7-- =2 =2 S 66 立体Bはxy 平面に関し て対称である。 64 3 212 空間内の平面 x = 0, x=1, y=0, y=1, z=0, z=1 によって囲まれた 立方体をP とおく。Pをx軸のまわりに1回転させてできる立体を Px, P 軸のまわりに1回転させてできる立体をP,とし,さらにPx と Pyの少 なくとも一方に属する点全体でできる立体をQとする。 Jano1 (1)Qと平面 z=t が交わっているとする。 このときPx を平面 z=t で切っ たときの切り口を Rx とし,Py を平面 z = t で切ったときの切り口を R, とする。Rx の面積,Ry の面積, R. と Ryの共通部分の面積をそれぞれ求 めよ。 さらに, Q を平面 z = tで切ったときの切り口の面積S(t) を求めよ。 (2)の体積を求めよ。 (富山大) 38 p.403 問題212

解決済み 回答数: 1
1/1000