学年

教科

質問の種類

数学 高校生

イの問題で解説のベン図も、"ここがない"の意味も分かりません😭教えてください

●集合の共通部分集ロ (ア)空欄にあてはまる適切な論理式を選択肢より選んで答えよ。 (1) (AUB)N(AUC)=AUD (昭和女子大,一部省略) (2) (ANB)U(ANC)=AN() (3) (A∩BNCnc=nc 選択肢 (a) AUB (c) CUA (b) BUC (d) ANB (e) BNC (f) CNA (g) AUB (h) BUC (j) A∩B (i) CUA (イ 空欄に下の条件 P1 ~ Pa から正しいものをひとつ選んで入れよ。 (k) BNC (1) CNA 明治学院大・文,一部省略) ABと同値な条件は (1) BOAと同値な条件は (2) ABと同値な条件は(3). P1: (A∩B) B P2: (A∩B) A ベン図を描くのが基本 P3: (AUB) A P(A∩B) B 集合の共通部分・和集合・ 補集合をとらえる基本はベン図を描くことであ る。ベン図から,「分配法則」や「ド・モルガンの法則」が成り立つことが分かる。ベン図を描く方法に これらの法則を適宜組み合わせるといった使い方もできるようにしておくとよいだろう。 解答言 (ア) (1)~(3)の左辺が表す集合をベン図に描くと下図のようになる. (1) A (2) A B (3) B A 例えば (1) を図示するには、 AB、 AB. B AUB= CAUC= の共通部分 (n) を図示して、左 図のようになる。 C (1) (AUB) (AUC)=AU (BC) となり,答えは, (e) (2) (A∩B)U(ANT)=AN(BC) となり,答えは, (k) (3) (A∩BNC)n=(A∩B) ∩Cとなり, 答えは, (j) 注 (1) 分配法則 (p.68の① で,右辺 左辺) の式である. (2) (A∩B)U(ANT)=AN(BUT)=AN(BC) (3) (A∩BNC)n=(A∩BUT)C=(A∩BNC)U(TOC) =(A∩BNC) UΦ=ANBNC (イ) P1~P4の条件の左辺を網目部で表すと, 以下のようになる。 P(A∩B)⊃BP2: (A∩B) AP3:(ĀUB) A P(A∩B) B A BA D D B A B A (1)のベン図は, A以外に BNC の部分も含んでいることか ら答えを探す. (2)(3)も同様 ←式変形で解くと左のようになる。 最初の等号は分配法則, 2番目は ドモルガンの法則による. B 網目部⊃右辺となる条件を求め る.例えば, P1 の場合、網目部が Bを含むことになり、太枠部で まれた部分がない (空集合) こと になる. ここがない ACB ⇔AB ⇔AB がない ⇔ACB 以上により,答えは,(1)... P1, (2)... P3, (3) P2 (網目部⊃B) ⇔B=Φ 1 羽 一般に, XCYX(上 図参照)

未解決 回答数: 1
数学 高校生

プリントを見てもちょっと解き方がわからないので教えて頂きたいです😭

一般形 (y=ax2+bx+c) から 標準形(y=a(x-p)2+g) < さて,今回最大の山場となる「平方完成」にチャレンジしてみましょう!! 「教科書通りのやり方」 と 「俺がおすすめするやり方」の2種類のやり方をお知らせします。 びびっときた方を覚えてみて下さい!! (これを覚えないと, まず受験には対応できません) ☆「教科書通りのやり方」 ① x2の前に数字がないタイプ y=x2-6x+5 xの項を 「2×□x」 の形にする =x2-2×3x+5 ② x2の前に数字があるタイプ y=-2x2-8x +5 8xまでを x2 の前の−2で くくる。(-がついてると符 =-2(x2+4x) +5 号もかわるので注意!!) 符号は そのまま JA 出てきた3を( )の中に 入れ, 2乗した32を引く =(x-3)2-32 +5 =(x-3)2-9+5教科書にないこの行 =(x-3)2-4 大事!! =-2(x2+2×2x)+5 = -2x² + 2 x 2 17 +5 ①と同じ作業を{}の中でやる =-2{(x+2)2-22}+5 =-2{(x+2)2-4}+5 -2を-4にかけて外に出す =-2(x+2)2+8 +5 (一番間違いやすいとこ) =-2(x+2)2 + 13 ☆「俺のおすすめのやり方」 6xまでを() でくくる ① x2の前に数字がないタイプ マイナスの方を外に出す y=x2-6x+5 =(x2-6x) +5=(x2-6x+9-9)+5=(x2-6x+9)-9+5=(x-3)2-4 1 頭の中で x この数字をつかっての(x)となる -3 頭の中で2乗 出てきた数字を (-3)2=9 ( )の中に足して引く ① x2の前に数字があるタイプ y=-2x2-8x+5 -2を外に出して, 8xまでをくくる (マイナスがついてると符号が変わるので注意) -4に-2をかけてから外に出す =-2(x2+4x)+5=-2(x2 +4x+4-4)+5=-2(x2+4x+4)+8+5= -2(x+2)2 +13 頭の中で×1/2 +2 頭の中で2乗 ↓ 出てきた数字を (+2)²=4 ( )の中に足して引く この数字をつかっての(x)2となる いかがでしょう? 自分でやりやすい方法を覚えて、 必ずマスターしましょう!!

未解決 回答数: 1
数学 高校生

緑色で丸で囲っているところについて。なぜ1≦3分の4aとなっているのにx=3分の4aはダメなんですか?

355 64 基本 例題 223 係数に文字を含む3次関数の最大・最小 00000 すなわち [2] YA [2] [2] は区間に極大値をと a³ α を正の定数とする。 3次関数f(x)=x-2ax2+αx0≦x≦1 における最大 立命館大 ] 基本 219 重要 224 4 るxの値を含み, 極大値 が最大値となる場合。 で最大となり 0 a 1 a 3 値 M (α) を求めよ。 指針 文字係数の関数の最大値であるが, p.350 基本例題 219 と同じ要領で, 極値と区間の 端での関数の値を比べて最大値を決定する。 f(x) の値の変化を調べると, y=f(x) のグラフは右図のよう ya になる (原点を通る)。 ここで,x= =/1/3以外にf(x)=f(10/28) ( 0 よって、1/3 α (1/3<α) が区間 0≦x≦1に含まれるかどうか a a 3 で場合分けを行う。 満たすx (これをαとする) があることに注意が必要。 <a a f(x)はx=/10/ M(a)(0) 4 [3] 0< <1/3a<1 すなわち 0<a<212 のとき, f(x)はx=1で最大となり M(a)=f(1) 以上から f'(x)=3x²-4ax+α2=(3x-a)(x-a) 解答 f'(x)=0とすると x= a 3. a まずは、f'(x)=0を満た すxの値を調べ, 増減表 をかく。 a>0であるから, f(x) の増減表は次のようになる。 <a>0 から a x a ... 3 0<<a f'(x) + 0 0 +1 (0)\-(E)\ 0<a<12/13<a のとき [3] 最大! a2-2a+1 a jal [3] は区間に極大値をと るxの値を含むが、 区間 この右端の方が極大値より も大きな値をとり, 区間 の右端で最大となる場合。 10 a a 4 3 M(α)=f(1)=α-2a+1 24≦3のとき M(a)= このとき 大阪 <f(1)=13-2a・12+α2.1 =a²-2a+1 f(x) 極大 (0) ここで,f(x)=x(x2-2ax+α²)=x(x-α)からもう (*) 曲線y=f(x) と直線 x= (3)=(-a)=7a³ 4 a³, f(a)=0 OL-13+TS =1/3以外にf(x) = 27 を満たすxの値を求めると, 3次関数の対称性の利用 目 4 検討 p.344 の参考事項で紹介した性質, 3 を用いて,f(x)=2742 を満たすx= 1/3以外のx の値を調べることもできる。 2つの極値をとる点を結ぶ線分の中点(つまり,変曲点) の y=f(x) x 座標は x=- -2a 2 3.1 3 点において接するから, f(x)/(x) 4 f(x)= =270から (1 x³-2ax²+a²x-7a³=0 4 で割り切れる。このこと を利用して因数分解する とよい。 S ゆえに (x-1)(x-1/4)-10-19 1102a a a 15 3 x= であるから X= 15 4 1 0 よって, f(x) 0≦x≦1における最大値 M (α) は,次のよ うになる。 01 9 a 4 3 4 a [1] 1<1/3 すなわち 4>3のとき 1 0 3 f(x) はx=1で最大となり M(a)=f(1) <指針_ a2-2a+1 -最大 ★ の方針。 [1] は区間に極値をとる xの値を含まず 区間の 右端で最大となる場合。 0 a a x 3 a 3 2 で, a+ から、 3 11/24)となる。 なお, p.344 で紹介した性質を用いる方法は,検算で使う程度 としておきたい。 で 0.0 6章 6 最大値・最小値、方程式・不等式 ことしないよ 練習 x3 0223 は正の定数とする。 関数f(x)=- x²+ 3 ax²- ピー2ax+αの区間 0≦x≦2におけ 3 p.368 EX142 る最小値 m (a) を求めよ。

解決済み 回答数: 1
数学 高校生

数学の確率分布の問題の質問です。 (1)でX1の分散をもとめる問題が答えと違っていました。立式が間違っているのか、計算間違いなのか教えてほしいです🙏🏻 E(X^2)-{E(X)}^2 じゃなくて、(X-m)^2×P(X)を使ってるのが間違いなのでしょうか??

【問2】 1回投げると, 確率p(0<<1) で表, 確率 1-pで裏が出るコインがある. このコインを投 げたとき,動点P は, 表が出れば +1, 裏が出れば-1だけ, 数直線上を移動することとする.は じめに, Pは数直線の原点 0にあり, n回コインを投げた後のPの座標を Xn とする. 必要に応じ て,正規分布表を用いても良い. (1) X1 の平均と分散を, それぞれp を用いて表せ. また, Xn の平均と分散を, それぞれんと p を用いて表せ. (2) コインを100回投げたところ X100 =28であった.このとき, pに対する信頼度 95% の信 頼区間を求めよ. (1) X」 についての確率分布は次のようになる。 X1 -1 1 計 確率 1-p p 1 であるから, X100 28 のとき 2k-100=28 k = 64 である. これより標本比率 Rは よって、求める X」 の平均E(X」) は R= 64 100 =0.64 E(Xi)=(-1)・(1-p) +1 p=2p-1 であり,分散 VOX」)は である. これより R(1-R) V(X)=(-1)・(1-p) +12.p-(2-1) 2 =4p(1-p) R-1.96 × 100 =0.64-1.96 × 0.641-0.64) 100 である. = 0.54592 ん回目の試行で表が出れば 1, 裏が出れば-1 の値をと る確率変数を Yk (k=1, 2,...,n)とし であり Xn=Y1+Y2+... + Yn R(1-R) R + 1.96 × と定める. Yk (k=1, 2,...,n) は互いに独立である から 100 0.64(1-0.64) = 0.64 +1.96 × E(Y)= E(X)=2p−1 100 V(Yk)=V(Xi)=4p(1-p) = 0.73408 であるから, 求める信頼区間は である. E(Xn)=E(Y1 +2 +... + Yn) 0.5459 p≤0.7341 =E(Y1) +E(Y2) +... + E(Vn) =nE(Y1) である. =m(2p-1) であり V(X)=V(Yi) + V(Y2)+…+ V(Yn) = nV (Y1) =4np(1-p) である. (2) kk=0, 1, 2, … 100 を満たす整数とする. コイ ンを100回投げて表がk回出るときのPの座標 X100 は X100=k・1+ (100-k) (−1) =2k-100

解決済み 回答数: 1
数学 高校生

(2)の部分でオレンジで線を引いている部分が分かりません😭教えてください

<k ) 20 2次不等式/ 「すべて」 と 「ある」 がらみ aを実数とし,f(x)=x2-4ax+a, g(x)=-ューSax+3a とする. (1) すべての実数に対しf(x)≧g(x) であるためのαの条件を求めよ。 賢 (2) ある実数x (1≦x≦2) に対しf (x) ≧g(x)であるためのαの条件を求めよ. (3) すべての実数 1, T2 に対しf (m) > g (x2)であるためのαの条件を求めよ. (4) f(x)≧g(z) がすべての実数xについて成り立ち、かつf(x)≦g(x2)である実数x1, I2 が存在するためのαの条件を求めよ. 条件を言い換える (大阪医薬大医,改題) 不等式f(x)≧g(x)は; 左辺にェを合流させた形f(x)-g(x)≧0にした ほうが式変形の可能性が出てくる. 一方,不等式(≧g (m2) は, f(x) -g (m2) ≧0と合流させて も (1) 2 は実数とする. が同じではないので式変形の可能性はない。以下,,, 「すべてのxに対しf(x)≧g(x)」「すべてのに対しf(x)-g(x)≧0」 「f(x) -g (z)の最小値≧0」 これは,前問と同じタイプである。 (2) 「あるπに対しf(x) ≧g(x)」 ⇒ 「あるæに対しf(x)-g(x)」 たば 「f(x)-g(x)の最大値≧0」 (うまい』を選べば,f(x) -g (z)が0以上になる) 「すべてのπ1, I2 に対しf (x1) >g (x2)」 (1) D (3) (下) ⇔ 「f(x)の最小値>g(x) の最大値」(どんな組 z1, T2 でも成立しなければならないから) (4) 「ある π1, r2に対しf (x1) ≦g(x2)」(うまい組 1, 2 を選べばf(x) ≦g(x2)) グラス& FCK ⇔ 「f(x) の最小値≦g(x) の最大値」 (なお、 「x1,x2が存在する」=「あるπ1, 2 に対し成立」) 圜解答圜 h(x)=f(x)-g(x)=2x2+4ax-2a=2(x+α)2-2a22a (1) h (x)の最小値-242-2αが0以上であることと同値であるから, A-2a2-2a≥0 ... a(a+1)≦0 .. -1≤a≤0 (2) 1≦x≦2におけるh (x) の最大値が0以上であることと同値である. x=1またはx=2で最大値をとるから,その条件は, h(1) ≧0または(20 .. 2a+20 または 6α+8≧0 .. a≧-1 または a≧- 4 3 4 3 (1) y=h(x) -a x 28.01 (2) y=h(x) (3) f(x) の最小値をm, g(x) の最大値をMとすると, mM と同値である. ここで,f(x)=(x-2a)2-4a2+α, g(x)=-(x+4a)2 + 16a2+3a であるから,m=-4a2+α, M=16a2+3a >Mにより, -4a2+α>16a2+3a 0>> (ウ) .. 20α²+2a<0 .. α(10a+1)<0 ① <a<0 10 (4) f(x)≦g(x2) である実数 11, T2 が存在する条件は,≦Mと同値. これは①のを≧に代えたものと同値であり,これと(1)とから, гa≤- 1 1 または 0≦a」かつ「-1≦a≦a≦ または α = 0 10 10 20 演習題 解答はp.63 ) (3) |y=f(x) x=2a すき間 (4) \y=f(x) y=g(x) x=-4a y=g(x) 不等式-2+(a+2)x+a-3<y<x2(a-1)x-2 (*)を考える.ただし, x, y, a は実数とする. このとき, 以下を満たすためのαの値の範囲を求めよ. (1) どんなに対しても,それぞれ適当なりをとれば不等式 (*) が成立する . (2)適当なyをとれば,どんなェに対しても不等式 (*) が成立する. (早大 人間科学) (2) yをまずェとは無 関係に決めなければなら ない. 59 53

解決済み 回答数: 1
1/230