学年

教科

質問の種類

数学 高校生

四角で囲んだ所って、どこからきたんですか??

478 例題 43 隣接3項間の漸化式 (3) 0000 この階段の (nは自然数) ある階段を1歩で1段または2段上がるとき, 方の総数を α とする。 このとき, 数列 {an} の一般項を求めよ。 数列 {an} についての漸化式を作り,そこから一般項を求める方針で行く 1歩で上がれるのは1段または2段であるから,n≧3のときれ 7段に達する 直前の 作を考えると [1] 2段手前 [(n-2) 段] から2歩上がりで到達する方法 [2] 1段手前 [ (n-1) 段] から1歩上がりで到達する方法 の2つの方法がある。 このように考えて、 まず隣接3項間の漸化式を導く。 → 漸化式から一般項を求める要領は, p.476 基本例題41と同様であるが、 ここで 特性方程式の解α. βが無理数を含む複雑な式となってしまう。計算をらくに ためには,文字 αのままできるだけ進めて、最後に値に直すとよい α=1, a2=2である。 解答 n3のとき, n段の階段を上がる方法には,次の [1], [2] の 場合がある。 [1] 最後が1段上がりのとき, 場合の数は (n-1) 段目まで の上がり方の総数と等しく an-通り [2] 最後が2段上がりのとき、 場合の数は (n-2) 段目まで の上がり方の総数と等しく an-2通り [1] 最後に1段上がる n段 n=2 [2] 最後に2段上がる n段 ここまで an-1 通り (n-1) 段 (-2) 段 ここまでα-2通り もっていく。 | (n-1) 段 よって an=an-1+an-2(n≧3) ...... (*) dants antitan (n ≥1) ①と同値である。 x=x+1の2つの解をα,β(α<β) とすると, 解と係数の 関係から α+β=1, aβ=-1 ①から an+2-(a+β)an+1+aBan=0 よって an+2-dan+1=β(aniュ-aan) az-aa=2-a ...... an+2-Ban+1=α(an+1-Ban) a2-ßa=2β...... ③ 和の法則 (数学 (*)でnnt 特性方程式 x2-x-1=0の x= 1±√5 2 a=1, a2=2 から ③から an+1-aan=(2-α)+ ..... ◄ar"-1 an+1-Ban=(2-β)α7-1 ④ ⑤ から (β-α)an=(2-α)β"-1-(2-β) an-1 ...... (6) an+1 を消去。 1-√5 a= 1+√5 B= 2 ラ であるからβ-α=√5 α,β を値に直 また, α+β=1, a2=α+1, B2=β+1であるから 2-α=2-(1-β)=β+1=β2 同様にして 12-a, 2-B 2-B=a² はαβの よって、⑥から an= 1+√5 \n+1 √(1+√5)-(1-√5) |- ④ 43 a=a2=1, an+2=an+1+3an 練習 次の条件によって定められる数列{an} の一般項を求めよ。 代入しても ここでは計算を ている。 類

解決済み 回答数: 1
数学 高校生

丸したところが,どうしてそのように言えるのかわからないので教えてください

478 重要 例 43 隣接3項間の漸化式 (3) n段 (nは自然数) ある階段を1歩で1段または2段上がるとき、 がり方の総数をα とする。 このとき, 数列{an}の一般項を求めよ。 この 指針 数列{a} についての漸化式を作り、そこから一般項を求める方針で行く。 1歩で上がれるのは1段または2段であるから, n≧3のとき En段に達する 作を考えると [1] 2段手前 [(n-2) 段] から2歩上がりで到達する) [2] 1段手前 [(n-1) 段] から1歩上がりで到達する方法は の2つの方法がある。このように考えて,まず隣接 3 項間の漸化式を導く。 →漸化式から一般項を求める要領は, p.476 基本例題41と同様であるが、 特性方程式の解α, β が無理数を含む複雑な式となってしまう。 計算をら ためには,文字 α βのままできるだけ進めて、最後に値に直すとよい α=1, a2=2である。 解答 n3のとき, n段の階段を上がる方法には、次の [1], [2] の 場合がある。 - [1] 最後が1段上がりのとき, 場合の数は (n-1) 段目まで の上がり方の総数と等しく 通り [2] 最後が2段上がりのとき, 場合の数は(n-2) 段目まで の上がり方の総数と等しく 1=2 通り [1] 最後に1段上がる [2] 最後に2段上がる n (n-1)段 ここまでαn- 通り (n-2) (n-1)段 ここまで よって an=an-1+an-2 (n≧3) ...... (*) 和の この漸化式は,an+2=an+1+an (n≧1) … ①と同値である。 x2=x+1の2つの解をα,β(α<β) とすると, 解と係数の 関係から比較 α+β=1, aβ=-1 ①から an+2-(a+β)an+1+aBan=0 よって X an+2-dan+1=β(an+1-aan), az-aa=2-a an+2-βan+1=α(an+1-Ban), a2-βa=2-β ...... a ... * 特性 ②から ③から an+1-dan=(2-α)βn-1 an+1-ßan=(2-β)α7-1 ...... (4) (5) ④ ⑤ から (β-α)an=(2-α)β"-1-(2-β)an-1 ...... (6) 1-√5 a= 2, B= 1+√√5 であるから β-α=√5 よって、⑥から an= √5 また, α+β=1, a2=α+1, β2=β+1 であるから 2-α=2 (1-B)=B+1=8° 同様にして ((1+√5)-(1-√5)) 2-β=α2 1+√5)* -(1-√5)**) 次の条件 練習 ④ 43 次の条件によって定められる数列{an} の一般項を求めよ。 a=a2=1, an+2=an+1+3an an a Ad

解決済み 回答数: 1
数学 高校生

この問題の解説の意味がわかりません 立式する過程での理由っていうものがよくわかんないので教えて欲しいです。

478 重要 例題 43 隣接 3 項間の漸化式 (3) | がり方の総数を an とする。 このとき, 数列{an} の一般項を求めよ。 この 指針 数列 {a} についての漸化式を作り、そこから一般項を求める方針で行く。 1歩で上がれるのは1段または2段であるから,n≧3のとき! 九段にする の2つの方法がある。 このように考えて,まず隣接3項間の漸化式を導く。 作 を考えると [1] 2段手前 [(n-2) 段] から2歩上がりで到達する方法 [2] 1段手前[(n-1) 段] から1歩上がりで到達する方法 →漸化式から一般項を求める要領は, p.476 基本例題41と同様であるが、 特性方程式の解α, βが無理数を含む複雑な式となってしまう。計算をらく ためには,文字 α βのままできるだけ進めて、最後に値に直すとよい。 α=1, a2=2である。 解答のとき,段の階段を上がる方法には,次の [1], [2] の 場合がある。 - [1] 最後が1段上がりのとき, 場合の数は (n-1) 段目まで の上がり方の総数と等しく an-1 [2] 最後が2段上がりのとき, 場合の数は (n-2) 段目まで の上がり方の総数と等しく an-2 =2 フィオ いて、 あ ある 新た ま ろ 月末 とな 漸イ こ {a か ① [1] 最後に1段上がる [2] 最後に2段上がる n FX 九段 a (n-1)段 ここまで an-1 通り (n-1) 段 | (n-2) 段 ここまで2通り よって an=an-1+an-2 (n≧3) (*) 和の法則(数学 この漸化式は,n+2=an+1+an (n≧1)... ①と同値である。(*)でカード x=x+1の2つの解をα, β (α<β) とすると, 解と係数の 関係から ①から α+β=1, aβ=-1 2-(1-x)=(- an+2-(a+β)an+1+aban = 0 よって an+2-dan+1=β(an+1-aan), az-aa=2-a an+2-βan+1=α(an+1-Ban), az-Ba=2-β ②から ③から an+1-aan=(2-α)B-1 an+1- -βan=(2-β)an-1 ◆特性方程式 x2-x-1=00 x= 1±√5 ...... a=1, al ◄ar"-1 ④ こ ...... ⑤ α+1 を消去 ④ ⑤ から (B-α)an=(2-α)β"-1-(2-β)α7-1 1-√√5 a= 2 B=1+1/5 2 であるから B-a=√5 また,α+β=1, a2=α+1, B2=β+1であるから 2-α=2-(1-B)=B+1=2 2-B=a² 同様にして よって、⑥から an= 1 1+√5 \n+1 1-√√5 2 雪 次の条件によって定め 3 α,βを値に直す 12-a, 2-8 は、α,Bの値を 代入してもよい ここでは計算を ている。

解決済み 回答数: 1
数学 高校生

エオがわかりません。 解説で言ってる事がわかりません。 3枚目の方法で自分で解いてたのですが、計算がやばいことになってしまいこの式を解けば答えは求まるのですが共通テストなので時間がかかってしまうと思い別の方法がないかと解説を見たのですが、解説が何を言ってるのかがわからず、悩... 続きを読む

の前に、 第2問 (配点30) (ml) 10000.0 ((l) [1] ある店で商品の価格の変更を検討している。 次の売り上げ個数についての 定のもとで、できるだけ売り上げ総額が大きくなるように価格を決めたい。ただ 10000円 変更後の価格, 売り上げ個数は正の値をとる範囲で考えるものとする。また、 100 消費税は考えないものとする。 e 1502 草) 100.0 avee.0 8970.0 8180.0 sace.0 ST80.0 1201.0 208.0 81-01.0 89$1.0 asee.o ers1.0 売り上げ個数についての仮定 0008.0 は整数 kは正の定数とする。 8210 TTB6.0 01.0 8054.0 8180.0 x% 値上げすると、 売り上げ個数は kx % 減少する。 ただし、0の 2188.0. 80010 80 が 「kx % 減少する」 とは 「-k.x % 増加する」こととする。 き 「x% 値上げする」 とは, 「-x% 値下げする」 こととし, 売り上げ個数 8825 120 818.0 DAYS.O 18 T088.0 100.0 10882118 asser 02.0 0108.0 E8 CASE.O 1180.0 0008.0 8020 08810 8898.0 10-100 ENG.0 808.0 M assi.0 8000.0 0488.0 rese.0 3000000 18.0 1000 ×0.3 3000 TOON.O (1) 商品 A の現在の価格は1000円で、年間の売り上げ個数は3000個である。商 品 A の材料費が上昇しているため、値上げを考えている。すなわち、売り上げ 8001.0 9685.0 af£0.0 個数についての仮定においてx>0とする。また,過去のデータより,商品 A 2 4 ・31 13 についてはk = 1/3 であることがわかっている。 0188.0 1180.0 US88.0 72 4 Clae.0 AP Cual. ICET 8183.0 818.0 8180 ( 20000 8010 A 1300円 30× COTP.0 0000.0 -2008.0 00/3120000 BEG 3000000 ALL (200000 (1)商品 A について, 30% 値上げするとき, 売り上げ個数は アイ % 減少 ST28.0 ersa.0. 0200-24002 DANED 31200001800 BATO.0 18 8180.0 218.0 し, 売り上げ総額は ウ % 増加する。 また, 30% 値上げする以外に, 1184.0 2002.0 . 8188.0 エオ % 値上げするときも, 売り上げ総額は 2008.0 ウム % 増加する。 8008.0 1.0 Besa.o $180.0 sage.0 88 1088.0 0805.0 8818.0 8200.(0047 TO 988 1000×100 6038.0 TACT.0 1838.0 1 +3000 1002.0 ICAT.O 1938.0 商品 A の売り上げ総額が最大になるのは, asee.0 0000.0. ある。 GOOO.I カキ 値上げするときで 00 0000.1 IYOV.0 1505.0 a (数学Ⅰ 第2問は次ページに続く。)

解決済み 回答数: 1
1/10