学年

教科

質問の種類

数学 高校生

ここの単元がほんとに苦手で、赤ペンで解説を写しましたがよくわかりません。 214も215も半径を1としているのに、上の例では半径が2になるのはなぜでしょう。 また、点Pの座標ってどうやって出しているのでしょうか。根本的にわかっていませんがどうか教えてください🙏

PO ① 57 の三角比の定義 右の図において,∠AOP = 0 のとき sin = cos =* r tan 0=y x (ただし, tan 90° は定義されない) ② 180°-0の三角比(0°0≦180°) sin (180°-0)=sin 0 cos(180°-0)=-cos tan (180°-8)=-tan0 例68鈍角の三角比 150°の正弦, 余弦, 正接の値を求めよ。 ya P(x, y) A -T 0 ▼0°<< 90° のとき, POINT57で定義された三角 比は, p.92 POINT53で定 義した三角比と同じになる。 P(x,y) y 0 8 x y A T x BIS 解答 右の図で,∠AOP=150°とする。 OTI nie () 半円の半径を = 2 にとると, 点Pの座標は(√31) そこでx=-√3, y=1 として おいて P 1 150° sin 150°= = 1 r 2' cos 150°=- =√3 √√3 801 200 -3 O A r 2 2 ESI 200 (S) tan 150°= 1 x √3 √3 は60 2 1 30° √3 基本 第4章 214 180°の正弦,余弦,正接の値を求め よ! 満たすりを 180°のど。 1800 半円の半径をしにとると、 点の皆様は(-10)口 sin 180°= そこでた小4=0として COS(80° Gin: = = 0 r Tan (80 = 1. 2 for 0 0 TG) (S) □215 90°の正弦、 余弦の値を求めよ。 満たすのを求め 400 sin(180-90)=sin90° 109 (180-90%) 上の図でLA0P=90°とする 半円の半径を1にとると 点の座標は(0.1) そこで大20.9=1として、 sin90% 4=1=1 cos 90° = 14: 9:0 COS90% ORI ee 209

回答募集中 回答数: 0
数学 高校生

この問題の解説の[1]で、f(0)>0となっています。 これが、f(0)≧0ではない理由を教えていただきたいです。なぜ、f(0)=0は入らないのでしょうか? 教えてください。よろしくお願いします。

展 106 放物線がx軸 放物線 y=x-8ax-8a+24 がx軸の正の部分と、異なる点で変わるように 定数αの値の範囲を定めよ。 CHART GUIDE | 放物線y=ax2+bx+c と x軸の共有点のx座標と定数んの大小に関する問 題では、グラフをかき [1] f(k) の符号 [2] D=62-4ac に注目する。 ただし, f(x) =ax2+bx+c である。 [3] 軸の位置 本間は,k=0 の場合(異なる2つの共有点のx座標がともにより大きい)で、 [1] f(0) > 0 [2] D > 0 [3] (軸の位置)>0 が条件。 解答 f(x)=x²-8ax-8a +24 とすると, 放物線 y=f(x)は下に凸で,軸は直線 x = 40 である。 方程式 f(x)=0 の判別式をDとすると, 放物線y=f(x)がx軸の正の部分と異な る2点で交わる条件は,次 [1] [2] [3] が同時に成り立つことである。 [1] f(0)>0 [2] D>0 [3] 軸が x>0 の範囲にある ■ [1] f(0)=-8a+24, f (0) > 0から8a+240 よってa<3 ...... ① (a-1)(2a+3)>0 3 a<-- 1<a [2] D=(-8a) 2-4.1.(-8a+24)=32(2a²+a-3) PIC =32(a-1)(2a+3) D> 0 から よって 2 ] [3] 4a>0 から a>0 ③ ] ① ② ③ の共通範囲を求めて 1<a<3 (ED) 3 0 1 2 注意 考え方の流れは下図の矢印のようになる。 YA [1] 軸| [3] 下に凸の放物線 y=f(x)がx軸の 正の部分と異な る2点で交わる グラフをかく 軸の 正の部 分で交 わる y軸より 右側に ある 条件を 読みとる [1] f(0) > 0 文章で表現 0 [2] D > 0 [2] 軸と x [[1] ~ [3] の [3] 軸 > 0 2点で 件から、グラ 交わるフがかける TRAINING 106 ④★ 定めよ。 201 DANA 2次方程式 x2(a-4)x+a-1=0 が次の条件を満たすように、 定数αの値の範囲を (1)異なる2つの負の解をもつ。

未解決 回答数: 1
数学 高校生

数Bの統計的な推測の仮説検定です。四角の部分がなぜ、正規分布表から、この数が出てくるのか分からないので解説お願いしたいです!

94 第2章 統計的な推測 10 5 9 仮説検定 数学Ⅰで学習した仮説検定について, 正規分布を利用する方法を学ぼう。 A 仮説検定 ある1枚のコインを100回投げたところ, 表が61 回出た。 この結果 から 「このコインは表と裏の出やすさに偏りがある」 と判断してよい ろうか。 すると, 表が出る確率と裏が出る確率は等しくないから,次の [1] がい コインの表が出る確率をとする。 表と裏の出やすさに偏りがあると える。 ここで,[1] の主張に反する次の仮定を立てよう。 [1] p=0.5 [2] p=0.5 「表と裏が出る確率は等しい」と仮定 出本 001 [2]の仮定のもとでは, 1枚のコインを100回投げて表が出る回数x は,二項分布 B(100,0.5) に従う確率変数になる。 2 期間に含ま たのだから。 覚えるとの主張 ると判断してよさ 2 一般に、母集団に関して 果によって、この仮説 検定という。また、 するという。 前ペー が棄却されたこ 仮説検定では、前ペー こると仮説を棄却 基準となる確率αを たは 0.01 (1%)と定め 有意水準αに対して B 15 Xの期待値mと標準偏差のは ような確率変数の値 m=100×0.5=50, o=√100×0.5×0.5 = 5 78 ページ参照 範囲を有意水準α であるから, Z= X-50 5 は近似的に標準正規分布 N(0, 1) に従う。 ページの例では、 ① 正規分布表から y P (-1.96 ≦ Z≦1.96) = 0.95 である。 確率変 ければ、「仮説を乗 0.95 120 である。このことは, [2] の仮定のもとで 0.025 きない場合、その 0.025 Z-1.96 または 1.96 ≦ Z ① という事象は,確率0.05 でしか起こらない 22 1.96-01.96- ことを示している。

未解決 回答数: 1
1/1000