学年

教科

質問の種類

情報:IT 高校生

15番の問題を教えてください

B 次の文の( )に入る適切な語句を記入しなさい。 バランスをシミュレーションしたい。 ある日 ( 0日目)の始めの牧場の草の量をxとする。牧場のヤギが1日に 食べる草の総量をy, 草の1日の増加率をeと仮定する。 また, モデルを簡 略化するため,草は1日の始めにeの倍率で増加すると考える。 0日目の終わりのときに残っている草の量は, ヤギが1日に食べる草の量と草が自然に増える量から, 牧場の草の需給 ① Xo ②2 y 3 e (5 y ) - (② )で示される。 (6) 草の増加率はeであるから, 1日目の始めの草の量x」は e x1 = =(③ ) x ((Ⓡ Xn- )) 草の量をxとすると, で示される。したがって、n-1日目の始めの草の量をx1日目の始めの Xo=X1 8 z (9) Xn= 9) = )x((® )) となる。このとき, 草が恒久的になくならず,かつ増えすぎないようにす るには,草が次の日の始めに同じ量に回復すればよい。 このとき, 0日目 と1日目を例に考えると,x0 とx」の間に (⑨ 立つことが分かる。 (10 X1 11 e 12 Xo の関係式が成り 13 20 そこで, ヤギが食べる草の量を観察したところ, y = 20kgであることが 分かった。よって, 草がなくならないためには, 0日目と1日目を考えて, X0, X1, e を用いた式で表すと, 14 1.25 b )=(Ⓡ )) が成り立つ。 0日目の始めの草の量が100kgであるとすると, 上の式と (⑨) の式から e=( )x((2 11)-( であれば,草は恒久的になくならず,かつ増えすぎないようになると分かる。 よって,草に与える肥料などを工夫して, 草の増加率が上記の値になる ように調整すればよいと考えられる。 ここで仮に, e= 1.1 だとすると, 草は ( 日目のうちに枯渇 する。現実的には,ヤギの食性や草の生育には天候・温度などさまざまな要 因が関係することが考えられるため、本来はより詳細なモデルが必要となる。 100=100-200 Xiex(Xo-20) x=11x(x-20) x=1.1x-2.2 X-1.1x=-2.2 ==+2.2 X=22 22

回答募集中 回答数: 0
情報:IT 高校生

(1)、(2)を教えてください🙇‍♀️ 今日までの課題です

5 次の問いに答えなさい。 現在、人間の知的な創作活動によって生み出され たものは、他人が無断で使用して利益を生むことが できないように、作者の権利が法律で保護されてい ます。 我々が書く論文やレポートを含め著作物は著 作権によって保護され、例外を除き著作者の許諾 がないと、複製や他人が自由に使うことはできませ ん。 例外の1つとして、 他人の著作物を自分の著作 物に複製して利用することを引用といいます。引用 は自らの考えや主張が独断ではなく、他との関係や 裏付けがあることを示すたいへん重要な行為であり, その引用の仕方には,一定のルールがあります。 (1)引用が一般的な書籍からであった場合、出所を 明らかにするために必要な項目を列挙しなさい。 (2)次の具体例が、下線aの例外に該当する場合には ○該当しない場合には× と答えなさい。また、 xの場合にはその理由を述べなさい。 ①自分が買ったCDに入っている曲を,ジョ ギング時に聞くため携帯プレーヤーにコ ピーした。 友人も一緒に走るので、友人の プレーヤーにもコピーした。 調べ物をしていて、 図書館に役に立ちそう な資料があったので、 必要部分を図書館で コピーし持って帰った。 学校で教材として配付されたプリントはある 本のコピーであり、最終的に全ページのコピー が配られたので, その本を買わずに済んだ。 ④ 有名な小説の一部分が, 大学入試問題の長 文問題として利用された。 ⑤ あるレポートに取り組んでおり, 自分が今, 頭の中で考えていることと全く同じ内容の 文章をネット上のニュース記事で発見した ので,その文章を無断でコピーし自分の考 えとして発表した。 ⑥ 現在ベストセラーの小説を全ページ点字翻 訳して点字図書を作成し, 視覚障がい者の 方々に楽しんでもらった。 ⑦ 以前アルバイトでお世話になったスーパーの 新装開店イベントに自分もバンド仲間と参加 し、有名グループの最近のヒット曲を1曲演 奏した。 そのときはアルバイトではなかった ので特に報酬は受け取っていない。 長をか って成 ご」を今

回答募集中 回答数: 0
情報:IT 高校生

教えてください🙏

p.76~D 練習問題 の次の(1)~(6)の文章と最も関係の深い語句を語群から選びなさい。 (1) 数の小さい順に並べること。 12)セルの場所のことで, 横(行)方向をアルファベット, 縦(列) 方向を数字で表す。 (3) セルをコピーすると, コピー先を基点としたほかのセルを参照 解答欄 *p76~m )を別の形ま トにデータを入) )などを入加て される。 する。 (4) 数の大きい順に並べること。 (5) セルに自動的に連続したデータを入力する機能。 (6) セルをコピーしても.コピー元と同じセルを参照する。 賞算の計算をする。 除算は「+」。 こ入力する時は ウ.セル番地 ■語群 ア. オートフィル イ、昇順 (4 オ、相対参照 3 エ.降順 カ、絶対参照 章 2次の(1)~(4)に答えなさい。 (1) 6 2 8 4 5 の数値を昇順に並べなさい。 (2) 6 2 8 4 5 の数値を降順に並べなさい。 (3) 5つのデータ12345 がある。中央値を求めなさい。 アルファベッ たセルと参照す と列の両方に 二指定する法 こださ (4) 6つのデータ 123456 がある。中央値を求めなさい。 回 表計算ソフトで次の成績一覧表を作成した。(1)~(4)のセルに入力さ れた式をア~シの中から選び, 記号で答えなさい。ただし,合否欄 の合格条件は3教科の合計が180点以上であり, 合格の場合は > p.80~p81 できる。 ることを 「O」を表示し,不合格の場合は 「×」 を表示する。 C D E F G A B 成績一覧表 英語 50 1 合否 合計 193 139 国語 数学 名前 青山 圭祐 井上 美咲 川田 楓 佐藤 健太 浜本 由利 2 77 66 この値を 3 55 48 36 4 る。また。 となる。 97 87 284 100 79 40| 5 83 94 256 6 12 29 81 7 8 p.82~p.89 英語 国語 数学 61 2 9 592 る。SUM 教科別平均点 教科別最高点 702 100 10 97 94 11 る。 ( ) (1)セル C10 (2)セル D11 (3)セルF4 (4)セル G3 。 どちら ア.=SUM(C4:E4) イ. =SUM(D3:D7) エ, =MAX(D3:D7) 数 能 首を四始 ウ. =MAX(C3:C7) オ,=AVERAGE(C3:C7) カ, =AVERAGE(C4:E4) キ.=COUNT(C4:E4) ク. =COUNT (D3:D7) うる。 さ コ、=COUNTIF (G3:G7," × ") ケ. =COUNTIF(G3:G7," ○ ") サ, =IF(F3>=180," ○"," × ") シ,=IF(F3<180," ○ "," × ") 37 日=S 56 回 =S 出×○o×

回答募集中 回答数: 0
情報:IT 高校生

問4の解説を授業でしなければならないのですが、答えの出し方がわかりません。(シ)=3、(ス)=4、(セソ)=75です。どうしてそうなるのか教えてください!!

決勝進出チームと予選敗退チームの違いを調べるために,決勝進出の有無は, 決勝進出であれ は1, 予選敗退であれば0 とした。また,チームごとに試合数が異なるので,各項目を1試合当 たりの数値に変換した。 ある年のサッカーのワールドカップのデータの一部(データシート) K 表1 A B C 1 J F チーム試合数総得点ショートパス ロングパス 反則 回数 D E G H 決勝進出|1試合当たりの1試合当たりの1試合当たりの1試合当たりの 1 ショートパス本数ロングパス本数 278.00 反則回数 1.67 D 本数 本数 の有無 得点 2 TO1 0 0.33 109.33 3 1 834 328 5 TO2 1923 510 1 2.20 384.60 102.00 2.40 3 5 11 12 4 T03 3 0 0.33 216.67 89.67 3.67 1 650 269 11 5 T04 1 1.71 322.43 101.57 1.57 7 12 2257 711 11 6 T05 0 0.67 247.00 78.00 2.67 3 2 741 234 8 TO6 1 1.00 320.00 111.00 1.80 7 5 5 1600 555 9 また,データシートを基に, 統計処理ソフトウェアを用いて, 図1を作成した。 1試合当たりの ショートバス本数 1試合当たりの ロングパス本数 1試合当たりの 反則回数 1試合当たりの得点 I C 語 編 題C co coc O○ 0C ○ の A B I 全チャム: 0.828 予選敗退: 0.697 決勝進出: 0.732 あ D E 全チーム: 0.114 全チーム: 0215 予選敗退 0.113 予選敗退 0.527 決勝進出-0.157 決勝進出:-0.333 い え 全チーム:-0.398 全チーム:-0.407 全チーム:-0.236 予選敗退: 0.047 予選政退-0.473 予選敗-0207 決勝進出 -0.597 決勝池出:-0.200 決勝進出-0.168 う お か 図1 各項目間の関係 図1のI~Vは, それぞれの項目の全参加チームのヒストグラムを決勝進出チームと予選敗退 2 1試合当たりの ショートパス本数 1試合当たりの ロングパス本数 1試合当たりの 反則回数 1試合当たりの得点 決勝進出の有無 L o0 ; 解-。 目 | 8

回答募集中 回答数: 0
情報:IT 高校生

問4の解説を授業でしなければならないのですが、答えの出し方がわかりません。(シ)=3、(ス)=4、(セソ)=75です。どうしてそうなるのか教えてください!!

決勝進出チームと予選敗退チームの違いを調べるために,決勝進出の有無は, 決勝進出であれ は1, 予選敗退であれば0 とした。また,チームごとに試合数が異なるので,各項目を1試合当 たりの数値に変換した。 ある年のサッカーのワールドカップのデータの一部(データシート) K 表1 A B C 1 J F チーム試合数総得点ショートパス ロングパス 反則 回数 D E G H 決勝進出|1試合当たりの1試合当たりの1試合当たりの1試合当たりの 1 ショートパス本数ロングパス本数 278.00 反則回数 1.67 D 本数 本数 の有無 得点 2 TO1 0 0.33 109.33 3 1 834 328 5 TO2 1923 510 1 2.20 384.60 102.00 2.40 3 5 11 12 4 T03 3 0 0.33 216.67 89.67 3.67 1 650 269 11 5 T04 1 1.71 322.43 101.57 1.57 7 12 2257 711 11 6 T05 0 0.67 247.00 78.00 2.67 3 2 741 234 8 TO6 1 1.00 320.00 111.00 1.80 7 5 5 1600 555 9 また,データシートを基に, 統計処理ソフトウェアを用いて, 図1を作成した。 1試合当たりの ショートバス本数 1試合当たりの ロングパス本数 1試合当たりの 反則回数 1試合当たりの得点 I C 語 編 題C co coc O○ 0C ○ の A B I 全チャム: 0.828 予選敗退: 0.697 決勝進出: 0.732 あ D E 全チーム: 0.114 全チーム: 0215 予選敗退 0.113 予選敗退 0.527 決勝進出-0.157 決勝進出:-0.333 い え 全チーム:-0.398 全チーム:-0.407 全チーム:-0.236 予選敗退: 0.047 予選政退-0.473 予選敗-0207 決勝進出 -0.597 決勝池出:-0.200 決勝進出-0.168 う お か 図1 各項目間の関係 図1のI~Vは, それぞれの項目の全参加チームのヒストグラムを決勝進出チームと予選敗退 2 1試合当たりの ショートパス本数 1試合当たりの ロングパス本数 1試合当たりの 反則回数 1試合当たりの得点 決勝進出の有無 L o0 ; 解-。 目 | 8

回答募集中 回答数: 0
情報:IT 高校生

問4の解説を授業でしなければならないのですが、答えの出し方がわかりません。(シ)=3、(ス)=4、(セソ)=75です。どうしてそうなるのか教えてください!!

決勝進出チームと予選敗退チームの違いを調べるために,決勝進出の有無は, 決勝進出であれ は1, 予選敗退であれば0 とした。また,チームごとに試合数が異なるので,各項目を1試合当 たりの数値に変換した。 ある年のサッカーのワールドカップのデータの一部(データシート) K 表1 A B C 1 J F チーム試合数総得点ショートパス ロングパス 反則 回数 D E G H 決勝進出|1試合当たりの1試合当たりの1試合当たりの1試合当たりの 1 ショートパス本数ロングパス本数 278.00 反則回数 1.67 D 本数 本数 の有無 得点 2 TO1 0 0.33 109.33 3 1 834 328 5 TO2 1923 510 1 2.20 384.60 102.00 2.40 3 5 11 12 4 T03 3 0 0.33 216.67 89.67 3.67 1 650 269 11 5 T04 1 1.71 322.43 101.57 1.57 7 12 2257 711 11 6 T05 0 0.67 247.00 78.00 2.67 3 2 741 234 8 TO6 1 1.00 320.00 111.00 1.80 7 5 5 1600 555 9 また,データシートを基に, 統計処理ソフトウェアを用いて, 図1を作成した。 1試合当たりの ショートバス本数 1試合当たりの ロングパス本数 1試合当たりの 反則回数 1試合当たりの得点 I C 語 編 題C co coc O○ 0C ○ の A B I 全チャム: 0.828 予選敗退: 0.697 決勝進出: 0.732 あ D E 全チーム: 0.114 全チーム: 0215 予選敗退 0.113 予選敗退 0.527 決勝進出-0.157 決勝進出:-0.333 い え 全チーム:-0.398 全チーム:-0.407 全チーム:-0.236 予選敗退: 0.047 予選政退-0.473 予選敗-0207 決勝進出 -0.597 決勝池出:-0.200 決勝進出-0.168 う お か 図1 各項目間の関係 図1のI~Vは, それぞれの項目の全参加チームのヒストグラムを決勝進出チームと予選敗退 2 1試合当たりの ショートパス本数 1試合当たりの ロングパス本数 1試合当たりの 反則回数 1試合当たりの得点 決勝進出の有無 L o0 ; 解-。 目 | 8

回答募集中 回答数: 0
1/2