学年

教科

質問の種類

情報:IT 高校生

問4の解説を授業でしなければならないのですが、答えの出し方がわかりません。(シ)=3、(ス)=4、(セソ)=75です。どうしてそうなるのか教えてください!!

決勝進出チームと予選敗退チームの違いを調べるために,決勝進出の有無は, 決勝進出であれ は1, 予選敗退であれば0 とした。また,チームごとに試合数が異なるので,各項目を1試合当 たりの数値に変換した。 ある年のサッカーのワールドカップのデータの一部(データシート) K 表1 A B C 1 J F チーム試合数総得点ショートパス ロングパス 反則 回数 D E G H 決勝進出|1試合当たりの1試合当たりの1試合当たりの1試合当たりの 1 ショートパス本数ロングパス本数 278.00 反則回数 1.67 D 本数 本数 の有無 得点 2 TO1 0 0.33 109.33 3 1 834 328 5 TO2 1923 510 1 2.20 384.60 102.00 2.40 3 5 11 12 4 T03 3 0 0.33 216.67 89.67 3.67 1 650 269 11 5 T04 1 1.71 322.43 101.57 1.57 7 12 2257 711 11 6 T05 0 0.67 247.00 78.00 2.67 3 2 741 234 8 TO6 1 1.00 320.00 111.00 1.80 7 5 5 1600 555 9 また,データシートを基に, 統計処理ソフトウェアを用いて, 図1を作成した。 1試合当たりの ショートバス本数 1試合当たりの ロングパス本数 1試合当たりの 反則回数 1試合当たりの得点 I C 語 編 題C co coc O○ 0C ○ の A B I 全チャム: 0.828 予選敗退: 0.697 決勝進出: 0.732 あ D E 全チーム: 0.114 全チーム: 0215 予選敗退 0.113 予選敗退 0.527 決勝進出-0.157 決勝進出:-0.333 い え 全チーム:-0.398 全チーム:-0.407 全チーム:-0.236 予選敗退: 0.047 予選政退-0.473 予選敗-0207 決勝進出 -0.597 決勝池出:-0.200 決勝進出-0.168 う お か 図1 各項目間の関係 図1のI~Vは, それぞれの項目の全参加チームのヒストグラムを決勝進出チームと予選敗退 2 1試合当たりの ショートパス本数 1試合当たりの ロングパス本数 1試合当たりの 反則回数 1試合当たりの得点 決勝進出の有無 L o0 ; 解-。 目 | 8

回答募集中 回答数: 0
情報:IT 高校生

問4の解説を授業でしなければならないのですが、答えの出し方がわかりません。(シ)=3、(ス)=4、(セソ)=75です。どうしてそうなるのか教えてください!!

決勝進出チームと予選敗退チームの違いを調べるために,決勝進出の有無は, 決勝進出であれ は1, 予選敗退であれば0 とした。また,チームごとに試合数が異なるので,各項目を1試合当 たりの数値に変換した。 ある年のサッカーのワールドカップのデータの一部(データシート) K 表1 A B C 1 J F チーム試合数総得点ショートパス ロングパス 反則 回数 D E G H 決勝進出|1試合当たりの1試合当たりの1試合当たりの1試合当たりの 1 ショートパス本数ロングパス本数 278.00 反則回数 1.67 D 本数 本数 の有無 得点 2 TO1 0 0.33 109.33 3 1 834 328 5 TO2 1923 510 1 2.20 384.60 102.00 2.40 3 5 11 12 4 T03 3 0 0.33 216.67 89.67 3.67 1 650 269 11 5 T04 1 1.71 322.43 101.57 1.57 7 12 2257 711 11 6 T05 0 0.67 247.00 78.00 2.67 3 2 741 234 8 TO6 1 1.00 320.00 111.00 1.80 7 5 5 1600 555 9 また,データシートを基に, 統計処理ソフトウェアを用いて, 図1を作成した。 1試合当たりの ショートバス本数 1試合当たりの ロングパス本数 1試合当たりの 反則回数 1試合当たりの得点 I C 語 編 題C co coc O○ 0C ○ の A B I 全チャム: 0.828 予選敗退: 0.697 決勝進出: 0.732 あ D E 全チーム: 0.114 全チーム: 0215 予選敗退 0.113 予選敗退 0.527 決勝進出-0.157 決勝進出:-0.333 い え 全チーム:-0.398 全チーム:-0.407 全チーム:-0.236 予選敗退: 0.047 予選政退-0.473 予選敗-0207 決勝進出 -0.597 決勝池出:-0.200 決勝進出-0.168 う お か 図1 各項目間の関係 図1のI~Vは, それぞれの項目の全参加チームのヒストグラムを決勝進出チームと予選敗退 2 1試合当たりの ショートパス本数 1試合当たりの ロングパス本数 1試合当たりの 反則回数 1試合当たりの得点 決勝進出の有無 L o0 ; 解-。 目 | 8

回答募集中 回答数: 0
情報:IT 高校生

問4の解説を授業でしなければならないのですが、答えの出し方がわかりません。(シ)=3、(ス)=4、(セソ)=75です。どうしてそうなるのか教えてください!!

決勝進出チームと予選敗退チームの違いを調べるために,決勝進出の有無は, 決勝進出であれ は1, 予選敗退であれば0 とした。また,チームごとに試合数が異なるので,各項目を1試合当 たりの数値に変換した。 ある年のサッカーのワールドカップのデータの一部(データシート) K 表1 A B C 1 J F チーム試合数総得点ショートパス ロングパス 反則 回数 D E G H 決勝進出|1試合当たりの1試合当たりの1試合当たりの1試合当たりの 1 ショートパス本数ロングパス本数 278.00 反則回数 1.67 D 本数 本数 の有無 得点 2 TO1 0 0.33 109.33 3 1 834 328 5 TO2 1923 510 1 2.20 384.60 102.00 2.40 3 5 11 12 4 T03 3 0 0.33 216.67 89.67 3.67 1 650 269 11 5 T04 1 1.71 322.43 101.57 1.57 7 12 2257 711 11 6 T05 0 0.67 247.00 78.00 2.67 3 2 741 234 8 TO6 1 1.00 320.00 111.00 1.80 7 5 5 1600 555 9 また,データシートを基に, 統計処理ソフトウェアを用いて, 図1を作成した。 1試合当たりの ショートバス本数 1試合当たりの ロングパス本数 1試合当たりの 反則回数 1試合当たりの得点 I C 語 編 題C co coc O○ 0C ○ の A B I 全チャム: 0.828 予選敗退: 0.697 決勝進出: 0.732 あ D E 全チーム: 0.114 全チーム: 0215 予選敗退 0.113 予選敗退 0.527 決勝進出-0.157 決勝進出:-0.333 い え 全チーム:-0.398 全チーム:-0.407 全チーム:-0.236 予選敗退: 0.047 予選政退-0.473 予選敗-0207 決勝進出 -0.597 決勝池出:-0.200 決勝進出-0.168 う お か 図1 各項目間の関係 図1のI~Vは, それぞれの項目の全参加チームのヒストグラムを決勝進出チームと予選敗退 2 1試合当たりの ショートパス本数 1試合当たりの ロングパス本数 1試合当たりの 反則回数 1試合当たりの得点 決勝進出の有無 L o0 ; 解-。 目 | 8

回答募集中 回答数: 0
情報:IT 高校生

どなたか(5)(6)の解説していただけませんか?

練習問題 回 国才とき 次の表計ッー | て集計した トは, 校内で観察できた動物を関数を使っ A CSる。 シートを見て, 下の問いに答えなさい。 Nr | 二l|還 前期 4. 6月| 前期 | 観察 カエル 5月 | 6月 |7月| 計 | 計 |平均|順位 キジバト 0 計0主因25|i(② 45| ⑧③ | ⑤ 婦菊9 13間縛生還還|還還5|菩0|計(2)唐隊10100|肝 ハト 件2EaWlLNGM 2000| 2 でき |隊() 8l半軒2|有暫5 1875| (6) Y ①) 75 70| _65| 210 ニ 4月7月のデータ人数 | ⑦) 4月>7月の最大データ値| (8) 4月7月の最小データ値| (9) を計日:2017/7/15 思 4月~ 7月の中央値 GO 六更較点 則 ら o っ oO gm ょ の Qp ピロ は ら B3:g% 1 セル B7 に4 月の合計を求める敵数式を書きなさい。 OU UI ( :E2) (2) セル 3 にカエルの前期計を求める際数式を半きなさい。 時 VA6E (3 (3) セル H3 にカエルの前期平均を求める関数式を書きなさい。 (3) VE ⑭) ( ヨ Bイ 4) セル G4 にキジバトの 4 月と 6 月の計を求める関数式を書きなさい。 [(。 = SUA (入る) (5) セル 13 にカエルの前期計を基にして, データの大きい順の順位を求める 関急庄RNR(求めたい順位のデータ, 範囲,.0) を設定し, その関数式をセ we uk(FsF お ル T6 までコピーレて表を完成させたい。 セル 13 の関数式を書きなさい。 (6) RAMNGFシTヤ (6) セル 13 の関数式をセル 16 までコビーレした場合, セル 16 はどのような関 RAMK( Pa 9 数式になるか書きなさい。 (6 uh に 数(セルの個数) を求める関数 T$60) 7 セル E8 に4 月 7 月に見られたデータ個 2かWAR

未解決 回答数: 1