学年

教科

質問の種類

数学 中学生

例121 幅を1/2で場合分けをするのはなぜですか。

121 ガウス記号を含む方程式 「次の方程式を解け。ただし、[x]はxを超えない最大の整数を表す。 (1)(2x13 (2) [3x-1] =2x Action ガウス記号は、nxn+1 のとき (3) 2x][x]=3 はガウス記号が1つのとき nxn+1 として外す (3)はガウス記号が見つ 場合に分ける [x] ごとに ☆☆☆☆ として外せ 例題120 にこの部分で考えてみる 特調 0 3 2 n X 11+ 12x1 3 ごとに値が変わる (ア)(イ) 13 J (1)(2)より, 3 2x < 4 であるから 3 2 (2) 13.x-11 2.x ① より 2x は整数である。 2.x 53x-1<2x+1 1≦x<2 ①より これを解くと であり, 2x は整数より 3 よって x=1, 2x=2,3 2 x<2 方程式の解は、不等式で 表される範囲になる。 3x-1] は整数である から 2xも整数になる。 2x3x-1 より x21 3x-1 <2x+1 より x<2 (3) [2x]-[x]=3 ・・・とする。 (n は整数)のとき 22x<2n+1 であるから また、x="であるから,②は [2x] = 2n 2n'n= よって n = 3 =3 7 ゆえに 3≦x< (イ)〃+. 2 xn+1 (n は整数)のとき 2月 +1≦2x<2n+2であるから [2x=2n+1 また,[x]=nであるから, ②は (2n+1)-n=3 よって n = 2 5 ゆえに ≤ x <3 5 より x 幅 1/12 場合分けす る。 2次関数と2次不等式 11/13≤ x < 1/10 1121 次の方程式を解け。ただし,[x]はxを超えない最大の整数を表す。 (1) [3xl=1 (2) 2x=[5] (3) [2x+1]=3x (4) [3x]-[x]=1 217 p.222 問題121

回答募集中 回答数: 0
数学 中学生

例121 幅を1/2で場合分けをするのはなぜですか。

121 ガウス記号を含む方程式 「次の方程式を解け。ただし、[x]はxを超えない最大の整数を表す。 (1)(2x13 (2) [3x-1] =2x Action ガウス記号は、nxn+1 のとき (3) 2x][x]=3 はガウス記号が1つのとき nxn+1 として外す (3)はガウス記号が見つ 場合に分ける [x] ごとに ☆☆☆☆ として外せ 例題120 にこの部分で考えてみる 特調 0 3 2 n X 11+ 12x1 3 ごとに値が変わる (ア)(イ) 13 J (1)(2)より, 3 2x < 4 であるから 3 2 (2) 13.x-11 2.x ① より 2x は整数である。 2.x 53x-1<2x+1 1≦x<2 ①より これを解くと であり, 2x は整数より 3 よって x=1, 2x=2,3 2 x<2 方程式の解は、不等式で 表される範囲になる。 3x-1] は整数である から 2xも整数になる。 2x3x-1 より x21 3x-1 <2x+1 より x<2 (3) [2x]-[x]=3 ・・・とする。 (n は整数)のとき 22x<2n+1 であるから また、x="であるから,②は [2x] = 2n 2n'n= よって n = 3 =3 7 ゆえに 3≦x< (イ)〃+. 2 xn+1 (n は整数)のとき 2月 +1≦2x<2n+2であるから [2x=2n+1 また,[x]=nであるから, ②は (2n+1)-n=3 よって n = 2 5 ゆえに ≤ x <3 5 より x 幅 1/12 場合分けす る。 2次関数と2次不等式 11/13≤ x < 1/10 1121 次の方程式を解け。ただし,[x]はxを超えない最大の整数を表す。 (1) [3xl=1 (2) 2x=[5] (3) [2x+1]=3x (4) [3x]-[x]=1 217 p.222 問題121

回答募集中 回答数: 0
数学 中学生

例121 (3)何故このように場合分けするのですか? 幅?についても何か教えていただきたいです

★★☆☆ 特講 例題 121 ガウス記号を含む方程式 次の方程式を解け。 ただし, [x] は x を超えない最大の整数を表す。 (1) [2x] = 3 (2) [3x-1] = 2x (3) [2x]-[x] = 3 ★★★☆ ReAction ガウス記号は,n≦x<n+1 のとき [x] = 〃 として外せ 例題120 (1), (2) はガウス記号が1つ[x]=nのときn≦x<n+1 として外す (3)はガウス記号が2つ 場合に分ける 42227=2 TT [x] 幅1ごとに値が変わる 一般にこの部分で考えてみる -1 0 3 1 x 2 n [2x] => n+12/2 n+1 3 幅ごとに値が変わる (ア)(イ) 0 2次関数と2次不等式 11 [2x] =3より, 3≦2x < 4 であるから 32 (2)[3x-1] = 2x ① より, 2x は整数である。 ①より 2x≦3x-1 <2x+1 これを解くと 1≦x<2 ≦x<2 xであり、2xは整数より 2x=2,3 3 よって x=1, 2 (3) [2x]-[x]=3…② とする。 (ア)n≦x<nt 1/2(nは整数)のとき 方程式の解は,不等式で 表される範囲になる。 [3x-1] は整数である から, 2x も整数になる。 2x3x-1 より |3x-1<2x+1 より x < 2 x≧1 xを幅 1/2で場合分けす 2n≦2x<2n+1 であるから [2x] = 2n る。 また,[x] = nであるから,②は2 |2n-n=3 よって n=3 ゆえに 3≦x< 2 1 (イ) n+ ≦x<n+1(n は整数)のとき 2 2n+1≦2x2n+2 であるから [2x] =2n+1 また, [x] = nであるから,②は (2n+1)-n=3 よって ゆえに n = 2 52 (ア)(イ)より ≦x<3 5 2017/ 121 次の方程式を解け。 ただし, [x] は x を超えない最大の整数を表す。 (1) [3x] =1 (2) 2x = [√5] (3) [2x+1]=3x (4) [3x]-[x]=1 220 217

回答募集中 回答数: 0
数学 中学生

例121 (3)何故このように場合分けするのですか? 幅?についても何か教えていただきたいです

★★☆☆ 特講 例題 121 ガウス記号を含む方程式 次の方程式を解け。 ただし, [x] は x を超えない最大の整数を表す。 (1)[2x] = 3 (2) [3x-1] = 2x (3) [2x]-[x] = 3 ★★★☆ (1),(2)はガウス記号が1つ [x]=nのとき n≦x<n+1 として外す fic Action ガウス記号は,n≦x<n+1 のとき [x] = n として外せ 例題120 (3)はガウス記号が2つ 場合に分ける [x] => -1 [2x] 48217=2 幅1ごとに値が変わる 一般にこの部分で考えてみる 3 1 2 n 4/1/2n+1 幅 ごとに値が変わる (ア)(イ) 思考プロセス 3 2章 2次関数と2次不等式 (1)[2x] =3より,3≦2x <4であるから 32 (2)[3x-1] = 2x. ① より, 2x は整数である。 ①より 2x3x-1 <2x+1 ≦x<2 。 これを解くと 1≦x<2 4 22x4 であり, 2x は整数より 2x=2,3 3 よって x=1, 2 (3) [2x]-[x] = 3 ・② とする。 方程式の解は,不等式で 表される範囲になる。 [3x-1] は整数である から 2xも整数になる。 2x3x-1 より x≧1 |3x-1<2x+1 より x<2 (ア) n≦x<n+ 1/2(nは整数)のとき 2n≦2x<2n+1 であるから [2x] = 2n また,[x] = n であるから,②は2n-n=3 よって n=3 ゆえに 3≦x< x</ xを幅 1/2で場合分けす る。 (イ) n+ 12/2≦x<n+1(nは整数)のとき 2n+1≦2x<2n+2 であるから [2x]=2n+1 また,[x] = nであるから,②は (2n+1)=3 よって n=2 5 ゆえに ≦x<3 2 5 (ア)(イ)より ≤x< 2 2 121 次の方程式を解け。ただし、[x]はxを超えない最大の整数を表す。 (1) [3x] =1 (2) 2x=[√5] (3) [2x+1]=3x (4) [3x]-[x]=1 217 222

未解決 回答数: 0
数学 中学生

209 (3)について、I行目は理解できるのですが、2行目以降がわかりません

★★☆☆ 組合せは何 場合 例題 209 整数解の個数 次の条件を満たす整数の組 (x, y, z) は何組あるか。 (1)x+y+z= 7, x ≧ 0, y ≧0, z≧0 (2)x+y+z= 7, x ≧ 1, y≧1, z≧1 01★★ ★★★☆ 6 章 15 順列と組合せ → a, a, b, c ◆a, a, a,c → b, b, b, b す の =2 (個) 必要 思考プロセス (3)x+y+z≦ 7, x ≧ 0, y ≧0, z≧0 既知の問題に帰着 (1)7を3つの整数x,y,zに割り振る。 ⇒ 7個のものを3種類に分ける。 ⇒7個のを2個の(区切り)で分ける。 (例題 208 に帰着) (1)・・ ...x, y, z はすべて 1以上 ⇒先にx, y, zに1つずつ0を割り振ってしまい, 残り4つの ○ の x,y,zへの割り振りを考えればよい。 対応 (3) 不等式の場合には、001000121わない 右のように対応させる。 001000010 y 対応 (x,y,z) = (2,4,1) ↓↓ (x, y, zに xyz割り振る (x,y,z)=(2,3,1) Action» 係数が等しい不定方程式の整数解の個数は、重複組合せで考えよ A (1) 求める組の総数は7個の○と2個のの順列の総数 に等しいから 9! 7!2! =36 (組) を合わせた ■場所から を選ぶと 15(通り) (2)求める組の総数は, 7個の○と2個のに対して, まず,3個の○を1個ずつx, y, zの値に割り振ると考 えると,残り4個の○と2個のの順列の総数に等しい =15 (組) から 6! 4!2! nHr (別解 合わ 50 含 つの箱だけに入 求める組の総数は7個の○に対して,間の6か所か ら2か所選んでを入れる入れ方の総数に等しいから 62 = 15 (組) (3)求める組の総数は7個の○と3個のを1列に並べ 1つ目のより左側の○の個数をxの値, 1つ目のと2つ目のの間の○の個数をyの値, 2つ目のと3つ目のの間の○の個数を2の値 とすると考えて 10! = =120 (組) 7!3! 209 次の条件を満たす整数の組 (x, y, z) は何組あるか。 (別解 x, y, zの3種類のもの から重複を許して7個と る組合せの数であるから 3H7=3+7-1C7=9C7=9C2 36(組) ○|○○○」のとき x=1+1=2 y=3+ 1 = 4 z=0+1=1 2個ので区切られた3 つの部分には少なくとも 1個の○が含まれる。 7-(x+y+z)=u とおくと x+y+z+u=7 x≥0, y ≥0, z≥0, u≥0 を満たす整数の組の個数 を求める問題となる。 は何 208 (1)x+y+z=8,x≧0, y≧0, z≧ 0 (2)x+y+z=9,x≧1, y ≧1, z≧1 (3)x+y+z=10,x≧0y0z≧0 381 p.391 問題209

未解決 回答数: 1
1/108