学年

教科

質問の種類

数学 高校生

この問題がf(a)×f(-a)の解を場合分けしている理由がわからないです。解説お願いします。

392 第6章 微分法 Check 例題221 実数解の個数 (2) 3次方程式x-3a²x+4a=0 が異なる3つの実数解をもつとする. 定 数αの値の範囲を求めよ. 考え方 例題 220 (p.391) のように定数を分離しにくい. このような場合は、次のように3次関 数のグラフとx軸の位置関係を考える. f(a) f(B) <0 y=f(x)] AJ. x 3次方程式f(x)=0 が異なる3つの実数解をもつ mň mn ⇔y=f(x) のグラフがx軸と3点で交わる mü ⇔ (極大値)>0 かつ (極小値) <0 ← (極大値)× ( 極小値) < 0 ■解答 f(x)=x-3a²x+4a とおくと, f'(x)=3x²-3a²=3(x+a)(x-a) ① 方程式 f(x)=0 が異なる3つの実数解をもつ条件は, y=f(x)のグラフがx軸と3点で交わること, (極大値)×(極小値) < 0 つまり, となることである. (i) ①より,f'(x)=0のとき, x=-a, a a>0のとき, -a [f'(x) + 20 増減表は右のよう になる. f(x) 極大 極小 a<0のとき, 増減表は右のよう になる. 3次関数においては, | (極大値)> (極小値) f'(x) + f(x) a *** 注) 例題221 で, (i) f(x) が極値をもつ、 (Ⅱ)(極大値)×(極小値) <0 のいずれかを 満たさないときは、 右の図のようにx軸 と3点で交わらない. (i) と(ii) をともに満たすことが重要である. a 20 + -a 0 極大 極小 a=0 のとき, f(x)=x3 より, f(x)=0 の解は x=0 (3重解) となり不適 (ii) f(-a)x f(a)=(2a³+4a)(-2a³+4a) 0 + =-4a² (a²+2)(a²-2)<0 (i) より, a=0 であるから,²0, ²+2>0 より, a²-2>0 (a+√2)(a-√2)>0 これより, a<-√2√2<a よって, 求めるαの値の範囲は, a<-√2,√2<a ( 極値をもたない) *** f(x) が極値をもつ ⇔ f'(x)=0 が異なる 2つの実数解をもつ f(x)=0 の (判別式) > 0 (p.373 参照) 直接, 増減表を書いて |極値を調べたが, f'(x)=0 の判別式を 使ってもよい。 判別式をDとすると, D=-4.3(-3α²) =36a²>0 より、 a<0, 0<a (a+0) となる. f(a) f(B)>0 a H1

解決済み 回答数: 1
1/3