学年

教科

質問の種類

物理 高校生

この問題の4番について質問です。振動数はおもりの重さによっては変わらないとあるのですが,なぜですか? おもりの数が多いほど,弦が張ることになるので,音が高くなると思ってました。(ギターみたいな感じで)

(3) Hz である。 また, a=35cm をそのままにし, おもりを4倍に増やし たとき, 弦は共振しなくなった。 弦を再び共振させるには,Bを 少なくとも (4) cm 右に移動しなければならない。 64 弦の共振 全体の長さが120cm 質量 1.8g の弦の右端に滑車を通して質量 6 kgのおもりをつるし,振動源Sによって弦を振動させる。 この弦は, コマBを動かすことにより任意の一点を固定できる。 弦の張力はどこ も同じで,振動する AB間の距離をα, 重力加速度を10m/s2とする。 問1 コマBを適当に動かすと, a= 30cmで弦が共振する。 さらにB を右に移動していくと, a=35cm で再び弦が共振する。 したがっ て,弦を伝わる横波の波長は (1) cmであり,このときのAB 間の腹の数は (2) 1個である。 またSの振動数は (1) 振動数 fと波の速さが変わっていないの で、波長も変わっていない。 Aが節で今こ とに節があるから, Aから30cmの範囲の定 常波の様子は同じこと。 そこで,Bを右へ だけ移せば再び共振する。よって .. 1 = 10 cm 5cm ごとに腹が1つずつあるから 35÷5=7個 B =35-30 2 2 2 (2) 2 (3)密度は p = 1.8×10-3 120×10-2 B< [kg] と [m〕 を - = 1.5×10-3 kg/m 用いること v = mg P 6 × 10 V1.5×10-3=200m/s 2 もとの弦と同じ材質 同じ長さで, 直径が2倍の弦に張り替え て, αを30cmにし, おもりの質量を6kgに戻す。 このとき弦は 共振し, AB間の腹の数は (5) 個となる。 また, AB間の腹の 数を3個とするには, Sの振動数を (6) 200 v=fa より - f === 10 × 10-2 = 2000Hz (4) はじめはVP Img =fx.......① Hz とすればよい。 mを4倍にしたときの波長を とすると,fは< ①を見て,m を4 倍にすると A B 変わっていないから V p 4mg =fv.......② 2倍になると即断 したい。 S 中にス ② より 2= =24=21=20cm ① 1 (上智大) ・B' Level (1)~(4)★ (5),(6)★ Point & Hint 隔は (1) (2) 弦が共振するのは, 両端が節となる定常波ができるとき。 節と節の間 2 だから、弦の長さが1の整数倍に等しいとき,共振が起こる。 弦の長さが4=10cmの整数倍のとき共振するから、35cmより大き い次の値としては 40cm。よって,5cm 動かせばよい。 A 2 (5)直径を2倍にすると, 断面積が4倍になる から、密度も4倍になる。 波長を入とす ①からを4倍にす ③れば入は1/2倍と即 mg=fie ......③ 断できる。 ると V 40 この問題のような状況では,Sはおもりの重力 mg に より1=4 ∴ A2 = =5cm 2 12= cm ごとにあるから 30÷2=12個 は v [m/s] はv= (3) 弦の張力をS〔N〕, 線密度をp 〔kg/m〕 とすると, 弦を伝わる横波の速さ 等しい。

解決済み 回答数: 1
数学 高校生

(3)についてです。やっていることはわかるのですが、なぜそこから最後に「ゆえに〜」で答えになるのかが分かりませんでした。教えていただきたいです。

190 解答編 50 2012年度 文系〔1〕・理系〔1〕 座標平面上に2点A (1, 0), B(1, 0) と直線があり, Aとの距離とBとの 距離の和が1であるという。 以下の問に答えよ。 (1) Zy軸と平行でないことを示せ。 (2)が線分AB と交わるときの傾きを求めよ。 (3)が線分AB と交わらないとき,と原点との距離を求めよ。 Level C 2/m =1 21ml=√m²+1 m2+1 両辺0以上なので平方して 1 4m²=m²+1 m² = 3 1 m = ± √3 (2) (3) 直線をy=mx+nとおき, 点と直線の距離の公式を用いて, A. Bからの距離 ポイント (1) 直線をx=kとおき, A, Bからの距離の和を場合に分けて計算する。 の和を求める。 線分AB と交わる, 交わらないという条件から, 絶対値を1つにまとめ ることができる。 図形的に求めると 〔解法2] のようになる。 解法 1 ゆえに、1の傾きは (3)(2)と同様に dA+dB=- |m+n|+|-m+n| √m²+1 直線が線分AB と交わらないことから f(1)f(-1)>0 20-TO (m+n)(-m+n)>0 したがって、m+nとm+nは同符号なので |m+n|+|-m+n|=|(m+n)+(-m+n) | = 2|n | 2|n| よって d₁+dB=- √m2+1 (1) Aとの距離, Bとの距離をそれぞれda, dB とおく。 の方程式をx=k (kは実数) とすると d+dB=1より =2 (-1≤k<1) よって dA+dB= √m2+1 d+dB=1より dx+ds=|k-1|+|k-(-1)|=|k-1|+|k+1| -2k (k<-1) 2k (k≧1) いずれの場合もd + dB≧2 であるので, d+dB= 1 となることはない。 すなわち、y軸と平行でない。 (2)1の方程式を y=mx+n (m,nは実数) とおくと,mx-y+n=0より |m+n||-m+n| |m+n|+|-m+n| dд+dB= + == √m2+1 √m²+1 /m²+1 ここで, f(x) =mx+nとおくと, 直線が線分AB と交わることから (m+n)(-m+n) ≤0 f(1)f(-1)≦0 (m+n)(m-n)≧0 したがって, m+nとm-nは同符号または一方が0なので |m+n|+|-m+n|=|m+n|+|m-n|=|(m+n)+(m-n) | =2|m| 2|m| (2) A,Bからに下ろした垂線の足をそれぞれP, Q とすると,条件より AP +BQ = 1 Bを通りと平行な直線を / 直線APとの交点 をRとすれば, △ABR について AB=2, AR = AP+PR = AP +BQ= 1, ∠ARB=90° したがって ∠ABR=30° ゆえに、この傾き、すなわちの傾きは ・・・() 2|n n 1 =1 √m²+1 √m²+1 2 │n│ ゆえに,Iと原点との距離は 1 ......(答) √m²+1 2 解法 2 (証明終) B 54 図形と方程式 191 R A

解決済み 回答数: 1
1/32