学年

教科

質問の種類

数学 高校生

右側の補足を読んでも分からないんですが、なぜそれぞれの確率の分子で-1してるんですか?🙇‍♂️ 6分の1かける5分の1だったらダメな理由はなんですか?🙇‍♂️

432 基本 例題 51 確率変数の期待値 ードを同時に引くとき,引いたカードの番号の大きい方を Xとする。このと 1から6までの番号をつけてある6枚のカードがある。この中から2枚のカ き, 確率変数Xの期待値 E (X) を求めよ。 CHART & SOLUTION 確率変数Xの期待値(平均) E(X)=Exp Xのとりうる値をx(k=1, 2,.....,n) とし,x=P(X = xx) とすると (X)=x+x+x=2xp k=1 p.428 基本事項 21 まず, Xの確率分布を求める。 その際, 確率Pの分母をそろえておくと, 期待値の計算がら くになる。下の解答では,C2=15 にそろえている。 解答 6枚のカードから2枚を引く方法は全部で C2通り Xのとりうる値は 2, 3, 4, 5, 6 である。 それぞれの値をとる確率は P(X=2)=282-131P(X=3)=- 15 P(X=4)=41=135, P(X=5)= P(X=6)=- 6C2 6-1_5 = 6C2 15 31_2 6C2 _5-1 = 6C2 15' 2715 15' よって, Xの確率分布は次の表のようになる。 X 2 3 45 6 計 1 2 3 4 5 P 1 Xは大きい方の数字で あるから, X=1 はあり 得ない。 X=k(26) のとき, 1枚はんのカードで 残 りは (k-1)枚から1枚 選ぶから, X=k である 確率は P(X=k)=k-1 6C2 15 15 15 15 15 ■えに, Xの期待値は 2 +5• E(X)=2-13 +3.1 +4.1/3 +5.15 +6.15 ・+3・ 15 15 _70_14 15 3 15 ・+6・ (起こりうるすべての場 合の数)=15 分母を そろえる。 (変数)×(確率)の和 答は約分する。

回答募集中 回答数: 0
1/9