学年

教科

質問の種類

地理 高校生

「家庭科 充実した生涯へ」からお聞きしたいです 《介護を担う人にはどのような課題があるか。P62を参考に130字程度で説明しない》について教えてください

1 は 加入 から 在 択 人 ン 護 柄 調査」) 22.9% 16.2% 5.4% 5 介護を担う人 介護は,だれがどのように担っているのだろうか。介護する) 要介護者と同居の人が約50%を占め、別居の家族や、 の専門家の割合が、それぞれ約10%強となっている。 事業者な また。 する人を性別にみると, 女性が約70%, 男性が約30%である。 れまでは女性が圧倒的多数を占めていたが,近年男性介護者の態 も増加している (7) さらに、近年、平約者会の使者向が胎児の使用度の水着から そうろうかいご にんにんかい 介護が必要になる年齢も高くなる傾向がある。 それにともなっ 護にあたる人の年齢も高くなり、 老老介護や認認介護と呼ばれるよ うな現象が起こっている。今後は、本部の書店で、別居家族が に介護にあたる場合も増加するだろう。同時期に子育てと介護と。 両方を担うダブルケアの課題も見過ごせない。 6 介護の社会化と介護保険制度 介護が必要となった高齢者を,家族とともに社会全体で支えて いく「介護の社会化」をめざす介護保険が,2000年から導入された その目標は,高齢者自身の自己決定の尊重であり、介護を必要とす る人が自分で必要なサービスなどを選択しつつ,自立的な日常生活 を営めるように支援する社会的なしくみである。 介護保険制度は,市区町村が保険者となり、日本に住所をもつ 40歳以上の人は被保険者として月々保険料を支払うしくみである いきほうかつえん ③ ようかいご (8)。サービスを受けるには, 市区町村などに申請し要介護認定を 受ける。 要支援と認定された場合は,地域包括支援センターととも に介護予防プランを立て介護予防サービスを利用する。 要介護と認 定された場合は,介護支援専門員(ケアマネジャー) とケアプラン を立て介護サービスを利用する。 介護を必要とする高齢者本人、家 族もまじえて本人の希望をできるだけかなえるよう協議がおこなわ れる。 サービスを受ける際には費用の1~3割を負担する。 かいごぼう 0 近年は介護予防に重点が置かれるようになっており, 体力をつけ 口と歯の健康を守る, 健康を保つ食事の工夫など、できる限り 介護を必要としない状態を保つ対策が展開されている。 7 高齢 大事で ない。 のな す大 介護 性が P に おこなう試験に合格し、所定の実務研修を終了 ケアプラン(介護サービス利用計画の作成 支援専門員 都道府県知事指定の スの調整などをおこなう。

回答募集中 回答数: 0
数学 高校生

(2)(3)の違いがよく分かりません。右ページの➗3! をする理由を読んでもまったく分かりません。誰か教えて欲しいです

372 基本 例題 25 組分けの問題 (2) ・組合せ 0000 9人を次のように分ける方法は何通りあるか。 (1)4人,3人, 2人の3組に分ける。 (2)3人ずつ, A, B, C の3組に分ける。 (3) 33組に分ける。 る 東京 (4)5人、2人, 2人の3組に分ける。基本21 指針 組分けの問題では,次の① ② を明確にしておく。 ①分けるものが区別できるかどうか ②分けてできる組が区別できるかどうか 「9人」は異なるから, 区別できる。 ...... 特に,(2) と (3) の違いに注意。 (1) 3組は人数の違いから区別できる。 例えば, 4人の組を A, 3人組をB, 2人の 組をCとすることと同じ。 (2)組に A,B,Cの名称があるから, 3組は区別できる。 (3)3組は人数が同じで区別できない。 (2) で, A, B, C の区別をなくす。 →3人ずつに分けた組分けのおのおのに対し,A,B,Cの区別をつけると,異な る3個の順列の数 3! 通りの組分け方ができるから,[(2) の数]÷3! が求める方 法の数。 (4) 2つの2人の組には区別がないことに注意。 なお,364 基本例題21との違いにも注意しよう。 (1)9人から4人を選び, 次に残った5人から3人を選ぶ 解答 と,残りの2人は自動的に定まるから, 分け方の総数は 9C4X5C3=126×10=1260 (通り) (2) Aに入れる3人を選ぶ方法は 3-(A-8) C3通り Bに入れる3人を, 残りの6人から選ぶ方法は 6C3通り Cには残りの3人を入れればよい。 したがって, 分け方の総数は 9C3 × 6C3=84×20=1680 (通り) 2人,3人,4人の順に選 (1) 八郎(S) んでも結果は同じになる。 4×53×2C2としても 同じこと。 (2),A,B,Cの区別をなくすと、 同じものが3!通 次ページのズーム UP 参 りずつできるから、分け方の総数は (9C3 × 6C3)÷3!=1680÷6=280 (通り) (4)A(5人),B(2人), C (2人) の組に分ける方法は 9C5×4C2 B,Cの区別をなくすと、 同じものが2! 通りずつでき るから,分け方の総数は (9C5×4C2)÷2!=756÷2=378 (通り) 照。 <次ペ 本

回答募集中 回答数: 0
数学 高校生

(2)(3)の違いがよく分かりません。右ページの➗3! をする理由を読んでもまったく分かりません。誰か教えて欲しいです

372 基本 例題 25組分けの問題 (2) ... 組合せ 9人を次のように分ける方法は何通りあるか。 (1)4人,3人,2人の3組に分ける。 (2)3人ずつ,A, B, Cの3組に分ける。 (3) 3人ずつ3組に分ける。 (4)5人2人、2人の3組に分ける。 0000 [類 東京経 基本21 「9人」は異なるから、区別できる。 指針 組分けの問題では,次の①,②を明確にしておく。 ①分けるものが区別できるかどうか ②分けてできる組が区別できるかどうか ****** 特に,(2)と(3)の違いに注意。 (1) 3組は人数の違いから区別できる。 例えば, 4人の組を A, 3人の組をB, 2人の 組をCとすることと同じ。 (2)組に A,B,Cの名称があるから, 3組は区別できる。 (3)3組は人数が同じで区別できない。 (2) で, A,B,Cの区別をなくす。 →3人ずつに分けた組分けのおのおのに対し,A,B,Cの区別をつけると、果た る3個の順列の数 3! 通りの組分け方ができるから,[(2) の数]÷3! が求める 法の数。 (4)2つの2人の組には区別がないことに注意。 なお, p.364 基本例題21との違いにも注意しよう。 解答 (1)9人から4人を選び, 次に残った5人から3人を選ぶ と、残りの2人は自動的に定まるから, 分け方の総数は 9C4×5C3=126×10=1260 (通り) ei (2)Aに入れる3人を選ぶ方法は 9C3通り Bに入れる3人を, 残りの6人から選ぶ方法は C3通り Cには残りの3人を入れればよい。 したがって, 分け方の総数は C3X6C3=84×20=1680 (通り) 2人,3人,4人の順に (1) んでも結果は同じになる C4X5C3×2C2としても 同じこと。 (2)で,A,B,Cの区別をなくすと, 同じものが3! 通 次ページのズームUP りずつできるから、分け方の総数は (9C3X6C3)÷3!=1680÷6=280 (通り) (4)A(5人),B(2人), C (2人) の組に分ける方法は C5×42通り B,Cの区別をなくすと,同じものが2! 通りずつでき るから,分け方の総数は (9C5X4C2)÷2!=756÷2=378 (通り) 照。 次ページのズーム 例

回答募集中 回答数: 0
現代文 高校生

尚文出版基本の現代文からですこの答え教えて欲しいです🙇‍♀️

ステップ 18 80 ステップ LISSTOH ステップ1 長文に取り組もう 鉄のしぶきがはねる 要約シート (技術は体の内側に) ミリ単位以下での正確さが求 められるでは、体がおぼえている感覚が頼 り。 技術はまさに〈身につける〉ものなのだ。 桃 (注) 工業高校でコンピューターを学ぶ心は、祖父が経営していた金属加工の工場が閉鎖して以来、手作業より もコンピューターを信頼するようになった。しかし、ひょんなことから「ものづくり研究部」の活動を手伝う ことになり、高校生たちがその技能を競う「ものづくりコンテスト」(ものコン)への出場を決意する。 1 ゴールデンウィークを間近に控えた四月の終わり、部活のミーティングで三つのことが伝えられた。 「毎年のことやけど、連休の間も練習はあります。」 「はい。」 だれもが真顔でうなずいた。 今は一本でも多 くの課題部品をつくりたい時期だ。反復練習、反復練習。練習を重ねて、体に課題の感覚をおぼえこませ ておきたい。 (1) 図「ついては五月の連休に特別講師に来てもらうことになった。」 「小松さん帰ってきたんですか?」 「い や」声をあげる心に、先生は小さく首を振って言った。 「本校の卒業生、さきはらゆきこさんだ。」 ③ 崎原、由希子? どこかできいたことがある。名前をきいただけなのに、心の頭の中でなぜか漢字に変 換された。もしかして。 顔を上げた心に、「そうだ。」というように先生はうなずき、「本校の卒業生。も のコン〉の全国三位入賞者よ。 大手機械メーカーに就職して、今は〈技能五輪>の強化選手としてがんばっ (注2) 目標6分 解答時間 目標15分 本文 1小松さん技術者。「ものづくり研 究部」に指導に来ていた。 2技能五輪若い職人たちが、それ ぞれの技術を競う大会。 3旋盤鉄を削って加工する技術。 根拠のある二つの事柄 4二律背反 の、つじつまが合わないこと。 5テーパー金属部品の一種。 6隅肉金属加工の技術。 7原ロー「ものづくり研究部」の部員。 要旨をつかむために! 空欄を埋めていこう ○ 文章展開図 【各2点】 100 1部活のミーティング 連休の間も練習 とる。」 20特別講師・・・ 崎原由希子さん (注4) 一度しか見ていないはずの笑顔が、くっきりと思い出された。 初めて見たとき、心はあの笑顔に抵抗を おぼえた。旋盤に対して複雑な思いがあったからだ。工場を造り、壊した。懐かしいけれど、つらい。好 きだけれど、嫌い。旋盤は心にどうしようもない二律背反をつきつけてくる。それにまっすぐに取り組む ことのできる崎原さんの笑顔を、ちゃんと見ることができなかった。 ごちゃごちゃと引っかかる思い出を (注3)せんばん 忘れたくて、コンピューターの世界を選んだつもりだった。 3 15 ⑤「ほら、この人よ。」先生は持っていたファイルの中から、見覚えのある新聞のコピーを取り出した。課 部品を手にした崎原由希子さん。 7-6 5~ ④心 初めて見たとき 笑顔に抵抗をおぼえた ・・・旋盤に複雑な思い 印象が違う はちきれんばかりに 笑顔の裏側 ごからものが、心には今ならわかる 毎日の地味な 毎日の地味な積み重ね ↓ 19 ステップ1 小説 「こんな人でしたっけ。」 その笑顔から受ける印象があまりに違うことに、心は少しうろたえた。あのと いと はにかむような控えめな微笑み。 けれど、はちき した笑顔は、そこにはなかった。 積み重ね。真夏はだらだらと滴る汗をぬぐいながら、冬は凍えるほど冷たい指先にたえながらの練習。膨 大な時間をツイやして練習をしても、体に残るものはほんのわずかだ。 やってられないほど効率が悪かっ た。けれどわずかながらも確かに身につくものがある。だから続けられる。 (注5) (注6) みにく ミジュクながら、テーパもネジもつくれるようになった。隅肉もなんとかやれる。 崎原さんの笑顔に隠 れているのも、たぶんそういう自信だと思う。もっと練習すれば、もう少しうまくなれるんじゃないか。 25 そういう期待。たぶん。 まだまだ全然追いつけないけれど、 崎原さんの体のなかにあるものを、自分も少 しはつかんでいると心は思う。だからこんなに崎原さんの笑顔がまぶしく見えるのだろう。 出たい。 「それから」 中原先生は声を引き締めた。「校内選考は、例年どおり六月初めだ。中間テスト明けでも あるけど、あわせてがんばってくれ。」 すっと冷ややかな空気が流れた。 校内選考。 選ばれるのはひとり。か、ふたり。 下腹にぐっと力が入っ 30 (注7) 能性が残っている。 た。自分でも意外なほどの思いが込み上げてきた。ひとりは原口に決まっているにしても、もうひと枠可 混じりけのない、ただまっすぐな思いだった。突然、途方もないような道が目の前に開けたみたいな気に なる。 地区大会、九州大会、全国大会。意味なんかいらない。 とにかく行けるところまで行ってみたい。見え 35 ているところには行ってみたい、それだけだ。ストレートな思いが、つき上げるように心の胸に湧いてきた。 ガイドの →間五を攻略 原さんの笑顔に対して、かつて心が抱いた印象に線、改めて見た際の印象に線を引こう 2 ... 確かに身につくもの ・期待 ○校内選考 心 なほどの思い 出たい 行けるところまで 行ってみたい 大きくとらえよう 要約への第一歩 【4点】 場面 心が崎原さんの写真を見る 心の心情 〈ものコン〉に 〇場面 という思いが込み上げる 理解を深めよう 要約のための確認 崎原さんの写真を見る →笑顔が輝いて見える ○状況 崎原さんの笑顔の裏側 心の心情 今ならわかる・・・自信・期待 まっすぐな思い出たい →行けるところまで 行ってみたい

回答募集中 回答数: 0
1/374