学年

教科

質問の種類

数学 高校生

高校数学の問題です。 上が問題で下が解答です。 (2)の問題で、解答の赤文字(黒丸)の部分の 考え方がわかりません。教えて下さい。

実戦問題 10 軸が変化する2次関数の最大・最小 αを定数とする。 2次関数 f(x) = x +2ax+3α² 4 の区間 0≦x≦4 における最大値を M, 最小値を とする。 (1)a=1のとき,M = ア m= イウ である。 (2) 放物線y=f(x) の頂点の座標は α<キクのとき M=ケ I a. a² 力 であるから,最大値 M は コ a≧ キクのとき また, 最小値 mは M = サ a² + a+ スセとなる。 a<ソタ のとき m= チ a² + ツ α+[テト] ソタ ≦a<ナ のとき a≧ナのとき m= a² m = ネ a² - となる。 (3)αの値が変化するとき、 M-mは α = ハヒ のとき最小値フ をとる。 解答 (1) α = -1 のとき f(x)=x²-2x-1=(x-1)2-2) よって, f(x) は区間 0≦x≦4 において> y=f(x) 7 放物線y=f(x)の頂点の座標は (-a, 2a²-4) (S-1) Key 1 区間 0≦x≦4 の中央の値はx=2であるから, f(x) の区間 0≦x≦における最大値 M は (i) -a >2 すなわち a < 2 のとき M = f(0)=3a²-4 (ii) -α ≦2 すなわち a≧-2 のとき M = f (4) = 3a² +8a+ 12 次に,f(x)の区間 0≦x≦4 における最小値mは 最大値 M = f(4) = 7, 最小値 m = f(1) = 2x8+z(+5) (2) f(x) = (x+α) +2a2-4 と変形できるから 01 -1 4x -2 (i) y y=f(x)! Key 1 (!!!) -α > 4 すなわち α < 4 のとき O 2T4 a (ii) YA y=f(x) PA m=f(4)=3a² + 8a +12 (iv) 0 <la≦4 すなわち -4 ≦a <0 のとき m=f(-α)=2a2-4 (via すなわち a≧0 のとき m = f(0)=3a²-4 (3)(2)(i)~(v) より, M-mの値は M-m4 01 (ア) a <-4のとき M-m=3a²-4-(3a²+8a +12) =-8a-16 (イ) -4 ≦a <-2 のとき M-m=3a²-4-(2a²-4) = a² (ウ) −2≦a <0 のとき M-m=30°+8a + 12 - (2α-4) = (a+4)2 (エ) a≧0 のとき M-m=3a²+8a+ 12-(3a²-4) = 8a+ 16 (ア)~(エ)より, M-mのグラフは上の図のようになる。 グラフより, M-mは a=-2 のとき 最小値 4 () a 12 4 x y=f(x) 0 44X a 16 (iv) y y=f(x) 0 a 4 x (v) y 2 0 a y=f(x) a0 4 X 6

回答募集中 回答数: 0
数学 高校生

高校数学の問題です。 上が問題で下が解答です。 (2)の問題で、解答の赤文字(黒丸)の部分の 考え方がわかりません。 教えて下さい。

実戦問題 9 区間が変化する2次関数の最大・最小 2次関数 f(x) = x-6x-3a +18 について (1) y=f(x) のグラフは,点(ア at ウ 1)を頂点とする下に凸の放物線である。 (2)a≦x≦a+2 における関数 f(x) の最小値をm(a) とする。 m(a) = a². オ]a+[カキ] (i) a< I のとき (ii) エ ≤as のとき m(a) ケコ α+サ (iii) <b ク m(a) = a² シ α+スセ (3)0≦a≦8 の範囲でαの値が変化するとき, m(a) は 中 ナニ a = タ のとき最大値 [チツ] a= のとき最小値 である。 ヌ ネ また, a = " 八 のとき m(a)=4 となる。 解答 Key 1 2 (1) f(x)=x-6x-3a +18= (x-3)2-3a+9 よってy=f(x) のグラフは,点(3, -3+9)を頂点とする下に凸軸は直線x=3 の放物線である。 a +2 <3 すなわち a <1 のとき m(a)=f(a+2) =(a-1)2-3a+9=d-5a+10 =(a-5)²+ 15 (ii) a ≧3≦a +2 すなわち 1≦a≦3のとき 0=10... m(a) = f(3) = -3a+9 0> (1-0)(+0) a3のとき m(a) = f(a) = a²-9a+18 S = 2 9 9 4 (3)(2)(i)(ii)より,0≦a≦8の 放物線の軸が (i) 区間より右にある (i) 区間内にある () 区間より左にある の3つの場合に分けて考える。 y (i) y=f(x) IS Oa 3 a+2 右の図のようになる。 よって、この範囲でm(α) は 範囲で y=m(a) のグラフをかくと 最大 (ii) 10% y=f(x) y=m(a) 06 α = 0, 8 のとき最大値 10, 9 9 y=4 2 a=- のとき最小値 4 また、グラフより m(α)=4 となる 9% 201 3 8 αの値は (ii), () の範囲にそれぞれ1 つずつ存在し 9 4 a 3 a+2 (iii) i y y=f(x) (ii) 1≦a≦3のとき -3α+9=4 より α = 5 0 3 a X 3 これは, 1 ≦a≦ 3 を満たす。 a+2 (iii) 3<a≤8 D E F STA α2-9a +18=4 より α-9a +14=0 よって (a-2) (a-7)= 0 3 <a ≦ 8 であるから a = 7 5 (ii), (ii)より, α = 3' 7 のとき m(a)=4 となる。

回答募集中 回答数: 0
数学 高校生

1ページ目の(2)が、なぜ2ページ目の(3)のようにならないのでしょうか、区別の仕方が分からないです。教えてください。

mentos] 190 基本 111 2次不等式の解法 (2) 次の2次不等式を解け。 (1)+2x+1>0 (3) 4x24x+1 (2) -4x+5>0 (4)~3x²+85-6>0 の不等式を ( [指針 平方完成した式から判断できる。 前ページの例題と同様、2次関数のグラブを いて、不等式のを求める。グラフととの共 点の有無は、不等号を番号におき換えた2次方 程式 ax+bx+c=0の の、または く '+2x+1=(x+1) であるから. 解答 不等式は よって、 は (x+1)0 1以外のすべての実数 (2)x4x+5=(x-2)+1であるから, 不等式は (x-2) +10 よって、解はすべての実数 (3) 不等式から 4x³-4x+150 4x4x+1=(2x-1)であるから, 不等式は (2x-11 50 1 よって、 解はx= 2 (4) 不等式の両辺に-1を掛けて 3.x²-8x+6<0 2次方程式 38x+6=0の判別式を D <KKK ADの場合、 基本形に 4x<-1-1 てもよい。 ADDの場合 基本形に、 関数コースー は、すべての y>0 して のとき 1のとき 721 (1) C Dとすると 22-4-3・6=-2 の係数は正で、かつであるから,すべてから、 xに対して3x²-2x+6> 0 が成り立つ。 よって、与えられた不等式の解はない 不等式の両辺に1を掛けて 3x-8x+6<0 x+6=3x1+1/3であるから、 x8+60を満たす実数は存在しない。 よって、与えられた不等式のはない +6 へのグラフと 住むグラフが下に あることから、すべ にして 次の2次不等式を解け。 111 (J)+x+420 (3) -4x+12-920 (2) 2x+4x+3<0

回答募集中 回答数: 0
1/554