学年

教科

質問の種類

数学 高校生

直線束の考え方がよく分かりません 87ページの内容を説明して頂きたいです😭 その上で、例題13も説明して頂きたいです

束の考え方 1つの共有点をもつような2つの直線 ax+by+c=0 ax+by+c=0 ...... ② 87 があるとします.ここで、①の式に②の式をを倍して足した新しい式 (ax+by+c)+k(a'x + b'y + c') = 0 を作ってみましょう.これもやはり直線の方程式になります。 ③の式から②の 式のk倍を引き算すれば① の式が作れるのですから, 「①と②」の式と「②と ③」 の式は同値です。つまり、図形的に見れば、 ①と②の2直線の交点と②と ③の2直線の交点は一致することになります。 一致する * このことより, ③は(kの値によらず) ①と②の交点を通る直線である ということがいえます. ③において, kの値をいろ いろと変化させてできる直線の集まりは一点で結わ れた直線の束に見えるので,直線束と呼ばれていま す. これを利用すると, 2直線の交点を通る直線を 実際に交点を求めることなく扱うことができるので とても便利です。 コメント んの値が動くと 直線が動く 直線束 第3章 この束には、②の直線は含まれません,これは, 「同値関係」を考えてみれ ばわかります. もし③が② に一致するならば, 「③と②の共有点の集合」は直 線 ②全体になってしまいますが,「①と②の共有点の集合」 は1点ですので、 同値であることに矛盾してしまうのです. 一方, ②の直線上にない点を (p,g) とすると,ap + b'y + c'≠0 ですので,③が(p, q) を通るようなkの 値を決めることができます (③ に (p, g) を代入したものはんの1次方程式にな るので,それを解けばいいのです) つまり,③は 「①と②の交点を通る ②以 「外のすべての直線」 を表せることがわかります.

回答募集中 回答数: 0
数学 高校生

この問題を解く時にkf+g=0を使うらしいのですが、なぜ片方の式にしか文字(今回だとk)がつかないのですか?

「基本例 812直線の交点を通る直線 2直線x+y-4=0 ...... ①, 2x-y+1=0 ...... たす直線の方程式をそれぞれ求めよ。 (1) 点 (1,2)を通る 00000 ②の交点を通り。 次の条件を満 (2) 直線x+2y+2=0 に平行 基本8 指針 2直線 ①,②の交点を通る直線の方程式として、次の方程式 ③を考える。 k(x+y-4)+2x-y+1=0 (々は定数) (1) 直線③が点(-1,2)を通るとして,kの値を決定する。 (2)平行条件ab2-a2b1=0 を利用するために, ③ を x, yについて整理する。 CHART 2直線f=0g=0の交点を通る直線 kf+g=0 を利用 は定数とする。 方程式 x+y-4)+2x-y+1=0 ...... ③ 2直線①②の交点を通る直線 を表す。 (1) 直線③が点 (-1, 2) を通るか ら -3k-3=0 すなわち k=-1 これを③に代入して -(x+y-4)+2x-y+1=0 すなわち x-2y+5=0 ① (-1,2) (2)③をxyについて整理して (k+2)x+(k-1)y-4k+1=0 直線 ③ が直線x+2y+2=0に平行であるための条件は (k+2) 2-(k-1)-1=0 よって k=-5 これを③に代入して -5(x+y-4)+2x-y+1=0 すなわち x+2y-7=0 別解として, 2直線の交 点の座標を求める方法 もあるが、 左の解法は今 後、重要な手法となる (p.168 例題 106 参照)。 検討 与えられた2直線は平 行でないことがすぐに わかるから確かに交 わる。 しかし, 交わる かどうかが不明である 2直線 = 0, g=0の 場合, k+g=0の形 から求めるには,2直 線が交わる条件も必ず 求めておかなければな らない。 ③表す図形が, [1] 2直線 ①②の交点を通る [2] 直線である ことを示す。 [1] 2直線の傾きが異なるから 2直線は1点で交わる。 その交点(x, y) は,x+y-4=0. 2x+1=0を同時に満たすから,kの値に関係なく, k(x+yo-4)+2x+1=0が成り 立ち, ③は2直線 ①②の交点を通る。 [2] ③ を xyについて整理すると (k+2)x+(k-1)y-4k+1=0 k+2=0, k-1=0を同時に満たすkの値は存在しないから,③は直線である。 なお、③は,kの値を変えることで, 2直線 ①②の交点を通るいろいろな直線を表すが、 ①だ けは表さない。 練習 2直線x+5y-7=0, 2x-y-4=0 の交点を通り, 次の条件を満たす直線の方程式 81 をそれぞれ求めよ。 (1) 点(-3,5)を通る (2) 直線x+4y-60に (ア) 平行 (イ) 垂直 133

未解決 回答数: 1
1/13