学年

教科

質問の種類

数学 高校生

数2 円の(1)の問題なのですが、最後の=9になるのはなぜですか?教えてください🙇‍♀️🙇‍♀️🙏

ay=x2 y₁) +y2=2 x座標が重解) す。 基本 例題 93 2つの円の位置関係の円のCS 15- 00000 (1)円 C1x2+y2-6x-4y+9=0 と点 (-2,2) を中心とする円 C2 が外接 している。円 C2 の方程式を求めよ。 (2)2つの円x+y=x2(r>0) x+y-8x-4y+15=0 , 類 名城大] ② が共有点をもつようなの値の範囲を求めよ。為p.13基本事項 CHART & SOLUTION 2つの円の位置関係 2つの円の半径と中心間の距離の関係を調べる 半径がそれぞれr, r' である円の中心間の距離をdとすると d=r+r' (1)2つの円が外接する (2)2つの円が内接する d=r-r' よって, (1) と合わせて 解答 2つの円が共有点をもつ⇔|r-r≦a≦rtr (1)(x-2)^2=4 から, 中心 (3,2),半径2である。 0円C2は中心が点 (2,2) であるから, 2つの円の中心間の距離dは d=√{3-(-2)}2+(2-2)2=5 C1, C2は外接しているから, C2 の半径を (0) とすると ->2+r=5 r=3 よって (x+2)2+(y-229-7 ゆえに (2)円 ①は中心 (0,0), 半径 (不) ②は(x4)2+(y-2)2=5 から, 中心 (4, 2), 半径√5である。もします。 2つの円の中心間の距離は √4°+22=√20=2√5 2つの①②共有点をもつ条件は \r−√5|≤2√5 ≤r+√√5 r-√5/≦2√5から よって 2√5r-√5=2√5 -√5≤r≤3√5 2√5 ≤r + √√5 5 √√5≤r ③ > と, ③ ④ の共通範囲を求めて √5≤r≤3√5 PRACTICE 933 = 5 ④ (1)円C:x2+y2=5 と点 (2,4) を中心とす 式を求め (2) 2つの円x2+y^=r² (r>0) 点をもつ ...D, x を求めよ。 半 t r=3√5 ① ② (4,2) C2 が内接している。 円 C2 の方程 -6x+8y+16=0 ② が共有 3章 12 円円と直線, 2つの円

解決済み 回答数: 1
数学 高校生

ピンクのマーカーで引いたところがなぜそうなるのか解説を読んでも理解できません。

3 基本 例題 99 外接する2つの円と直線 A.2321300000 点Aで外接する 2 つの円 0, 0′ の共通外接線の接点を それぞれ B, Cとする。 (1) △ABCは直角三角形であることを示せ。 (2)円0の直径 BD を引くとき, 3点 D, A,Cは1つ の直線上にあることを証明せよ。 D P.493 基本事項 2 指針 2つの円を結びつけるものとして重要なのは,次の3つである。 ② 共通弦 ① 中心線 ③ 共通接線 本問では,2円のようすから, ) 共通接線を結びつける手段に考えるとよい。 (1) A を通る共通接線とBCの交点をMとすると, Mから円 0, 0′ に,それぞれ接 線が2本ずつ引かれたことになる。 よって, 接線の長さは等しいことから |AM=BM=CM (2)3点D,A,Cが1つの直線上にあることをいうには,∠CAD=180° を示せばよ い。 3章 1円と直線、2つの円の位置関係 CHART ① 2つの円 2 接する2円 共通接線を引く 共通弦を引く 中心線で垂直に2等分 交わる2円 中心線上に接点あり 解答 (1) 2つの円の接点 Aにおける 共通接線と BC との交点をM とする。 MA, MB は円 0 の接線であ るから AM=BM MA, MC は円 0′ の接線であ 指針 |の方針。 共通内接線 AM が問題 解決のカギ。 円の外部の1点からその 円に引いた2本の接線の 長さは等しい。 るから AM=CM ゆえに AM=BM=CM よって, AはMを中心とする円, すなわち線分 BC を かくれた円を見つける。 直径とする円周上にあり ∠BAC=90° したがって, △ABCは ∠A=90° の直角三角形である。 (2) 線分 BDは円0の直径であるから B ∠BAD=90° よって ∠CAD= ∠BAD + ∠BAC =180° ゆえに, 3点 D, A, Cは1つの直線上にある。 D

解決済み 回答数: 1
数学 高校生

数学Aの青チャート97について質問です。初見でも模範解答のように着目できるような思考過程を教えて欲しいです。 写真にあげているところまでは考えつきました。

97 万べきの定理と等式の証明 00000 円に内接する四角形ABCDの辺AB, CD の延長の交点をE, 辺BC, ADの延 長の交点をFとする。 E, F からこの門に引いた接線の接点をそれぞれS, Tと 基本 するとき、等式 ES"+FT-EF" が成り立つことを証明せよ。 指針 解答 左辺のES', FT は、方べきの定理 ESEC・ED, FT-FA・FDに現れる。 しかし,右辺のEF" について は同じようにはいかないし、 三平方の定理も使えない。 そこで,EとFが関係した円を新たにさがしてみよう。 まず、Eが関係した円として, ADE の外接円が考え られる。 そして、この円とEF の交点をG とすると、四角形 DCFG も円に内接することが示される。 よって、右図の赤い2円に関し方べきの定理が使える。 CHART 1点から 接線と割線で方べきの定理 方べきの定理から ES"=EC・ED FT"=FA·FD △ADE の外接円とEF の交点を G とすると ∠EGD=∠BAD また、四角形 ABCD は円に内接 するから <DCF=∠BAD ①⑤ から ②⑥ から したがって 4 ∠EGD=∠DCF ゆえに、四角形 DCFG も円に内接する。 よって方べきの定理から B EC・ED=EF・EG ...... ⑤, FA・FD=FE・FG・・・・・・ ES2=EF・EG FT"=FE・FG ES2+FT"=EF (EG+FG) = EF2 が成り立つことを証明せよ。 習 右の図のように, AB を直径とする円の一方の半円上に ④97点Cをとり、 他の半円上に点Dをとる。 直線AC, BD の 交点をPとするとき,等式 AC・AP-BD・BP=AB2 <1点から接線と割線で、 方べきの定理 p.496 EX61 円に内接する四角形の内 角は、その対角の外角に 等しい。 1つの内角が、その対角 の外角に等しい。 <EG+FG=EF D B 491 3 A 円と直線、2つの円の位置関係 紹介 の実 まで カ な に 2 |

解決済み 回答数: 1
1/3