学年

教科

質問の種類

数学 高校生

なぜ(2)は男子二人の並び方を考えないんですか?🙇🏻

日本 例題 「男子2人、女子4人が次のように並ぶときの確率を求めよ。 (1) 6人が1列に並ぶとき, 男子2人が隣り合う確率 CHART & SOLUTION 確率の基本 Nとαを求めて 319 00000 p.312 基本事項 2 基本 12.18 a N 場合の数Nやαの値を, 順列の考え方で求める。 (1) まず, 男子2人をひとまとめ (枠に入れる) にして並べ方を考える。 そして、 男子2人 の並べ方(枠の中で動かす) を考える。 (2)異なるn個の円順列は (n-1)! 向かい合う男子2人を固定して考える。 解答 2章 4 (1) 6人が1列に並ぶ方法は 6通り 男子2人をまとめて1組と考えると, この1組と女子4人。 が並ぶ方法は 5!通り そのおのおのに対して, 隣り合う男子2人の並び方は 2!通り よって, 男子2人が隣り合う並び方は <<N 例えば 女女女男男女 として, 枠の中で動かす。 5!×2! 通り ゆえに、求める確率は 5!X2! 1 6! 3 (6-1)!=5! (通り) (2)6人の円順列の総数は 男子2人を男, 男2 とし て, 向かい合うように固 定して考えると, 女子4 人の並び方は, 4人の順 列となるから 4!通り よって、求める確率は 4_1 5! 5 女 EB 2 女 男の ta ← a N N 図のように、 回転する 一致する並び方があ から 男子2人を固定 て考える。 (男1 a A a N

未解決 回答数: 1
数学 高校生

(2)について なぜ側面の塗り方は数珠順列ではなく、円順列なのですか?

PR 第1章 場合の数 209 立方体の各面に、隣り合った面の色は異なるように, 色を塗りたい。 ただし, 立方体を回転させ 21 て一致する塗り方は同じとみなす。 (1)異なる6色をすべて使って塗る方法は何通りあるか。 (2)異なる4色をすべて使って塗る方法は何通りあるか。 (1) 上面の色を1つ固定すると,下面の塗り方は 5通り そのおのおのに対して, 側面の塗り方は,異なる 4個の円順列で区別 できる (4-1)!=3!=6(通り) (1) 1色で固定 展開図 (上面を除く) 下面 1章 PR PP 210 面の塗り方は異なる2個の円順列に等しく (2-1)!=1!=1(通り) 長方形の 125 よって、異なる6色をすべて使って塗る方法は 5×6=30(通り) 6つの面を異なる4色で塗るには, 1組の向か い合う2面を1色で塗り, もう1組の向かい合う 2面を別の1色で塗る。 4色から2組の向かい合う面に塗る2色の選び方 八重は4C2=6(通り) 長方 異なる色 側面は円順列 上下の面の色が異なるから, じゅず順 列ではない。 HINT (2) 回転させると一致する場 合があるから注意。 同色で 固定 色んな色 2組の向かい合う面の色を固定すると、残りの2 共 MAHOES 同色で 固定 固定すると同 まわしたとき かぶってほう ACTUACIOMAHA 2!通りではない。 のとき よって、異なる4色をすべて使って塗る方法は [1 2 6×1=6(通り) (回転させると一致する) 35-15( () 04-8+Se n (n≧2) を求めよ。 通りあるか。 ed

回答募集中 回答数: 0
数学 高校生

青チャートIA、場合の数と確率について質問があります。下に写真を貼り付けたのですが、なぜ同じような問題でもこのように解き方が変わってしまうのでしょうか。なるべくわかりやすく教えてください🙇🏻‍♀️よろしくお願いします。

378 基本例 例題 30 最短経路の数 右の図のように,道路が碁盤の目のようになった街がある。 地点Aから地点Bまでの長さが最短の道を行くとき,次 の場合は何通りの道順があるか。 (1) 全部の道順 (2) 地点 Cを通る。 [類 東北大〕 ○ (3)地点Pは通らない。 (4) 地点Pも地点 Q も通らない。 + 基本27 AL 指針AからBへの最短経路は,右の図で 右進 または 上進する ことによって得られる。 右へ1区画進むことを,上へ1区 画進むことを↑ で表すとき,例えば, 右の図のような2つの まちがしが敗因 (3) 通行止め からのリスタート最短経路は 地点配置 赤の経路なら 青の経路なら -1--111-1-1 0000 111→11→1→→ で表される。 したがって, AからBへの最短経路は, 5個 16個の同じものを含む順列で与えられる。 (2) A → C, C→B と分けて考える。 積の法則を利用。 (3) (Pを通らない)=(全道順) (P を通る) で計算。 C A (4) すべての道順の集合をUPを通る道順の集合をP, Q を通る道順の集合をQと n(PnQ)=n(PUQ)=n(U)-n (PUQ) ド・モルガンの すると, 求めるのは つまり ここで つまり (PもQも通らない)=(全道順)-(PまたはQを通る) 個数定理 n(PUQ)=n(P)+n(Q)-n(PnQ) 法則 (P または Q を通る) = (P を通る) + (Q を通る) (PとQを通る) 右へ1区画進むことを→, 上へ1区画進むことを↑で表す。 解答 (1) 最短の道順は5個, 16個の順列で表されるから 11! 5!6! 11-10-9-8-7 5・4・3・2・1 462(通り) (2) A から Cまでの道順 CからBまでの道順はそれぞれ 組合せで考えてもよい。 次ページの別解参照。 AからCまでで 3! 8! -=3(通り), -=70(通り) 1!2! 4!4! →1個, 2個 CからBまでで よって, 求める道順は 3×70=210(通り) →4個 14個 5! 5! (3)Pを通る道順は × -=10×10=100 (通り) 2!3! 2!3! よって, 求める道順は 7! 3! (4) Q を通る道順は × 3!4! 1!2! 462-100=362 (通り) =35×3=105 (通り) (Pを通らない) =(全体)(Pを通る) PとQの両方を通る道順は 5! 3! =10×3=30(通り) 2!3! 1!2! ▼PからQに至る最短の 道順は1通りである。 よって, Pまたは Q を通る道順は ゆえに, 求める道順は 100+105-30=175 (通り) 462-175=287 (通り)

未解決 回答数: 1
数学 高校生

(2)と(3)の解き方がなぜ異なるのかがわかりません。 (2)では0以上3以下が範囲として許されているので 4種類の中から重複を許して5個取り出すという点で4H5になることは理解出来ました。 しかし(3)でもa1,a2,…,a5は0以上で和が3なので、 0以上3以下(和の上... 続きを読む

386 重要 例題 34 数字の順列 (数の大小関係が 等式 次の条件を満たす整数の組 (a1, A2, A3, 4, α5) の個数を求めよ。 (1)0<a<az<a<a<a<9 + 0000 (2) 0≤aa2a3 a4 a5≤3 O 8の8個の数字から異なるこ (3) a1+aztas+a+Qs≦3, ai≧0 ( 2, 3, 45) X 合わせても相野べて煮なるから、1.2... 8 688/3/1777 ような解き方 a,a2, α5 を対応させればよい。 指針 (1) 個を選び, 小さい順に α1, A2, → 求める個数は組合せ C5 に一致する。 11ff112 ex.) ○+△+=9 Hr 重複は許さない まだ 基本 32 (2)(1) とは違って、条件の式に≦を含むから, 0, 1,2,3の4個の数字から重複を許 して5個を選び, 小さい順に α1, A2, ....., as → 求める個数は重複組合せ H5 に一致する。 を対応させればよい。 (3)おき換えを利用すると,不等式の条件を等式の条件に変更できる。 3-(a+a2+as+α+α5) =bとおくと また, a1+a2+αs+a+α5≦3から a+a2+as+a+αs+b=3 b≥0 よって,基本例題 33 (1) と同様にして求められる。 8の8個の数字から異なる5個を選び、小検討 α5 とすると,条件を満たす組が (1)1,2, ..... さい順に a1, A2, 1つ決まる。 よって, 求める組の個数は ついてない 8C5=8C3=56 (個) (2)0,1,2,3の4個の数字から重複を許して5個を選び, 小さい順に a1,a2, ......, α5 とすると, 条件を満たす組 が1つ決まる。 よって, 求める組の個数は 4H5=4+5-1C5=8C5=56 (個) (3) 3-(a1+a2+α3+α+α5)=bとおくと I .. ① ai≧0 (i=1,2,3,4,5), 6≧0 和が3以下 ○和が0のとき ・和が1のとき 2のとぎ a1+a2+as+a+a+b=3, ← 一等式 (2),(3)は次のようにして 解くこともできる。 (2)[p.384 検討 PLUS ONE の方法の利用 bi=aiti(i=1,2,3, 4, 5) とすると, 条件は 0<b<b<b<b<bく と同値になる。よって (1)の結果から 56個 + (3) 3個の○と5個の仕 よって、求める組の個数は, ① を満たす 0 以上の整数の 組の個数に等しい。 これは異なる6個のものから3個取 る重複組合せの総数に等しく 6H3=6+3-1C3=8C3=56 (個) 別解 a1+a2+as+a+as=k(k= 0, 1, 2, 3 を満たす 0 以上の整数の組 (a1, 2, 3, 4, α5) の数は5Hkであ るから 5H0+5H1+5H2+5H3 3のとき 場合の数を =4Co+5C1+6C2+7C3 =1+5+15+35=56 (個) 切りを並べ、例えば、 |〇||〇〇|| の場 合は (0, 102, 0) を表すと考える。 このとき A|B|CD|E|F とすると, A, B, C, DE の部分に入る 0 の数をそれぞれ al, an 振り 43, 4, as とすれば、 組が1つ決まるから 8C3-56 (1) 場合の によ ・代表 ・(a) .27 . • 10 10 (1 1 Sl

未解決 回答数: 1
1/181