学年

教科

質問の種類

数学 高校生

(2)って何故このようになるのでしょうか

130 第2章 2次関数 Check 例題 69 最小値の最大・最小 *** 例題 7 (1) y= (2) y= 岐阜大・改) (ア (イ は実数の定数とする. 本の関数f(x)=x+3x+mmの定数における最小値を おく. 次の問いに答えよ. ただし, m (1) 最小値g をmを用いて表せ. (2)の値がすべての実数を変化するとき, gの最小値を求めよ. 考え方 (1) 例題 68と同様に考える. 軸が定義域に含まれるかどうかで場合分けする。 (2)(1)で求めたg をmの関数とみなし, グラフをかいて考える。 9432 32 解答 (1)f(x)=x2+3+m=xt- +m- グラフは下に凸で, 軸は直線 x=- (i) +222のとき 7 つまり,<- のとき グラフは右の図のようになる. したがって,最小値 g=m²+8m+10(x=m+2) 3 (ii) m≦! ≦m+2のとき 2 つまり、1ma12のとき 3 場合分けのポイント 例題 68 (1) と同様 NT mm+2 小太郎 322 2 グラフは右の図のようになる. したがって, 最小値 最小 m m+2 9 g=m- x=- 4 3 x= 2 「考え方 y お 解答 (1 (iii) m>-- のとき グラフは右の図のようになる。 したがって,最小値 g=m²+4m (x=m) (2)(1) より,gmの関数とす ると,グラフは右の図のよう になる. -4 72- 3 最小 mm+2 94 2 (iii) (vi) m軸,g軸となるこ 注意する よって,gの最小値は, (i) -6(m=-4 のとき) 10 m 15 大気 (ii) 4 23 小 最小 4 F 練習 *** を求めよ. 69g をmを用いて表せ. また, m の値がすべての実数を変化するとき,gの最大値 xの関数f(x)=2x2+3mx-2mの0≦x≦1 における最小値をgとするとき *

未解決 回答数: 1
数学 高校生

青チャート125がわからないです!!! 最後の方に変数をx.yに置き換えるとありますが、 XとYは最初にx+y、xyとおいたのでそっちに戻すと考えてしまいます、 どなたか教えていただきたいです!🙇‍♂️

重要例題125点(x+y, xy) の動く領域 00000 実数x, y が x2+y' ≦1 を満たしながら変わるとき,点(x+y, xy) の動く領域を 図示せよ。 指針▷ x+y=X, xy=Yとおいて,X,Yの関係式 を導けばよい。 ① 条件式x2+y'≦1 を X, Yで表す。 →x2+y^2=(x+y)²-2xy を使うと ->> しかし、これだけでは誤り! X2-2Y≤1 重要1230 変数のおき換え 範囲に注意 ② x, y が実数として保証されるようなX, Yの条件を求める。 → x, yは2次方程式ピー(x+y)t+xy=0 すなわち-Xt+Y=0の2つの解では るから,その実数条件として 判別式 D=X2-4Y≧0 解答 X=x+y, Y=xy とおく。 x2+y2≦1から したがって (x+y^2xy1 すなわち X2-2Y≦1 X2 Y≥ x²-1..... 10 ① また,x, yは2次方程式(x+y)t+xy=0 すなわち f2-Xt+Y=0 の2つの実数解であるから, 判別式をDとす ると ここで D≧0 D=(-X)2-4・1・Y=X2-4Y よって, X2-4Y ≧ 0 から 2数α, βに対して p=a+B, q=aß とすると, α βを解とする 2次方程式の1つは x-px+q=0 X2 Y≤ **........ (2) ① ①,②から X2 2 2 変数を x, y におき換えて x2 1 2 したがって, 求める領域は, 右の図の 斜線部分。ただし、 境界線を含む。 12 12 2 12 /2 4 2 2 11/01/10 とすると 検討 実数条件(上の指針の2)が必要な理由 X,YO x+y=X, xy=Y が実数であったとしても,それがx2+y'≦1 を満たす虚数x, Yの値という可能性がある。例えば、x=1/21+1/2/i.y=1/12/2 xy= 1 yに対応した iのとき x+y=1(実数) - (実数) で, x'+y'≦1 を満たすが x, yは虚数である。このような(x, y) を除外する めに実数条件を考えているのである。 練習 125 きの 座標平面上の点(p.4) 21

未解決 回答数: 1
数学 高校生

Focus Gold 数学Ⅱ 例題105 黄色マーカー部、Y=0のとき、グラフのどの条件のことをさしていますか?

の交点Pは,どのような図形を描くか. 3章 図形と方程式 例題 105 2直線の交点の軌跡 ( 1 ) mが実数値をとって変化するとき, 2直線 y=mx+8...... ① x+my=6..... ② (別解Ⅰ) ① ② ②よ 6-8m 6m+8 考え方 ①②の交点Pの座標を求めると, x=- 2 y 1+m² 1+m² となり、ここか した 解答 去してxyの関係式を導くこともできるが, 計算がやや大変ではある。 ここでは、交点をP(X, Y)として, 1, ②より [Y=mX +8 LX+mY= 6 この2式よりを消去して,XとYの関係式を導くことを考える 交点の座標をP(X, Y) とすると, Y=mX +8 ...... ①、 X+mY=6...... ②、 6-X (i) Y0 のとき,②より, m= ③ Y ③①'に代入して, Y = - 6-X ・X+8 より Y こうする 分母にくる Y=0 と Y'=6X-X2+8Y 場合分けを したがって, (X-3)2+(Y-4)²=25 ④より、た ただし, Y = 0 となる④上の点(0, 0) (60)は除く。 X+m0=6 (i) Y = 0 のとき,②より, X=(別解 2) wwwwww つまり、 X=6 ①'に代入して, 0=m・6+8より,m=-- 4 3 4 3 したがって, m=-- のとき 2直線の交点は m=- P (6,0)となる. に代入し よって, (i), (ii)より交点Pの描く図形は, 中心 (34) 半径50円 ただし、原点を除く. てみるとよい (道)より、( た点(6.0)) 描く図形に Focus 注 2直線の交点の軌跡を求めるには, 「媒介変数の消去」か 「図形の性質を調べる」 次ページの (別解1) では,計算が大変になるが, m (媒介変数) の消去の練習にもなるので,交点P (x, y) の座標より,x,yの関 係式を導いている,また (別解2)では,①の傾きは②の傾 きは 1で、m=-1 より ①と②は垂直に交わる m m かるので,求める交点Pの軌跡は, AB を直径とする円周上にあると考えら また、①,②はそれぞれ定点A(0, 8), B(6, 0) を通ることがわ 練習 105 *** (6-

解決済み 回答数: 1
1/1000