学年

教科

質問の種類

数学 高校生

画像2,3枚目の〜❓マークの3点が理解できませんでした。 なぜそうなるのかを教えてほしいです。

第2問 必答問題) (配点 15 k,nを自然数とし,kについての条件Aを次のように定める。 条件A: k" が (n+1)桁の数となる。 (2)以下の問題では,必要ならば次の値を用いてもよい。 log102=0.3010.log103= 0.4771, log 107=0.8451, logio 11=1.0414 花子さんと太郎さんは, 続いて次の課題2 について話している。 0 課題2 条件Aを満たすんの個数が1となるようなnの最小値を求めよ。 よ (1)太郎さんと花子さんは、次の課題1 について話している。 課題 1 条件Aを満たすkの個数が、xの値によってどのように変わるかを考察 せよ。 太郎:いきなり”で考えることは難しそうだね。 n=1の場合から具体的 に考えてみよう。 花子: n=1のときは,条件Aは 「kが2桁の数となる。」つまり 10≦k < 10°と表せるね。 このようなkは全部でアイ個あるよ。 99-9=90 n=2のときはどうなるかな。 花子: どのようなnに対してもk=10は条件Aを必ず満たすことはわ かっているよ。 太郎: そうか。 条件Aを満たすの個数が1となるときは,k=10のみと わかるね。 花子 (10-1)", (10+1) (n+1) 桁になるかどうかに注目してみよう。 (10-1)" は (10+1)" は blog (10-1) == Welogioco - (ogrol) =n-logol 条件Aを満たすkの個数が1となるためのnの必要十分条件は, キが (n+2) 桁以上になることである。 J: 0125 0 あることがわかるよ。 花子:n=3のときも同じように計算していくとnを大きくしていく と、条件を満たすの個数は減っていく気がするね。 n をどんど ん大きくしていくと, 条件Aを満たすんの個数が0となるのか な? 56.78.9 太郎: n=2のときは,条件Aは 「kが3桁の数となる。」 だから, 10°k < 10°を満たす自然数を数えればいいね。 10=3.16... であることを用いると,この不等式を満たすには全部で ウェ 個 10≦k10010 31-9=22 10k<31.6... 以上より, 条件Aを満たすんの個数が1となるとき,n クケであり, 求めるnの最小値はクケであることがわかる。 の解答群 ⑩どのようなnに対しても (n+1) 桁にならない実 は ①nの値によって, (n+1) 桁になるときとならないときのどちらもある 70-4300 キ の解答群 太郎:10” は (n+1) 桁だから,k=10のときは,条件Aを必ず満たすよ。 ⑩ (10-1)" ① 10+1)" だから,条件Aを満たすんの個数が0とはならないね。 (3) 条件Aを満たすの個数が2となるようなnは全部で コサ個ある。 (数学Ⅱ,数学B,数学C第2問は次ページに続く。) -9- - 8 コロ

回答募集中 回答数: 0
数学 高校生

画像3枚目のように比をつかって解いたのですが、 PR/AB=10/21になってしまいました。 この考え方は間違っていますか?教えてください。

分散、標準偏差 入ります。 ア, イ, m」 と標準偏差のは 450 イウ,...で示 1.1/2(1-2)=125=5 大きいから、 Z5 従う。 また, X=60 のとき X-50とすると、 は近似的に標準正規分 V(X),標準偏差 (X)は E(X)=np V(X)=np (1-p 確率変数Xが二項分布 B(n, 従うとき,Xの期待値 E(X) OP= 20A+OB 1+2 OA+OB 内分点の位置ベクトル 次に,点は線分AQ の中点であるから, AQ2AH であり 線分ABをmin に内分する点を Pとすると OQ = OA + AQ =OA+2AH OP= "OA+mOB m+n ... ① 60-50-2 5 B 50,212) に従う。よって、どの期待値mと標準偏差のは X-np √np (1-p) 正しいとすると、1回の試合でAが勝つ確率は であるから, Y 従うとき,Z= 確率変数Xが二項分布 B(n, (X)=√mp(1-p) 二項分布の正規分布による近 点は直線 OP 上の点であるから, kを実数として 0 OH = k OP とすると が大きいとき, 確率変数は と表される。このとき AH-OH-OA - kOP - OA = k(²/OA+/+OB)-OA B mPn 点Pが直線AB上にある H B ⇔AP = AB 的に標準正規分布 N(0, 1)に従う = (k-1)OA+KOB --2 を満たす実数k が存在する。 ベクトルの差 50.12=25 ここで,点Qは直線OP に関して, 点Aと対称な点であるから, OPAQ であり AB = OB-OA OPAH (③) Y-25 50は大きいから, Z2= 5 とすると, Zは近似的に標準正規分 √2 したがって 0, 1)に従う。 また, Y=30 のとき 30-25 Z₂ = 2=12 5 =1.4142≒1,414 .. ② OP.AH=0 (OA+/OB){(1/2-10A+/kOB}=0 (20A+OB)・{(2k-3)OA+kOB}=0 (4k-6) OA 2+(4k-3) OA・OB+k OB=0 (4k-6)×12+(4k-3)x1+k(2)=0 8k-15 - =0 P(-1.96 ZS 1.96) = 0.95 解法の糸口 り,有意水準 5% の棄却域は Z≦-1.96 または 1.6 Z ..③ ここで 2009年から2018年の全100 試合の中で実際にAが勝ったのは 24+3660 (試合) 正規分布表を用いて棄却域を 求め, (1) (2)それぞれ求めた Z1,Z の値が棄却域に入るか どうかを調べる。 15 k = 16 これを②に代入して AH=438×168-10A+1/3×1/8OB ①の値は③に入るから, 仮説Hは棄却される。 また, 2019年から2023年の全50試合の中で実際にAが勝ったのは30試 ②の値は③に入らないから, 仮説Hは棄却されない。 以上により, 有意水準 5% の検定において, (1) では仮説Hは棄却されて (2) では仮説Hは棄却されない (①)。よって,(1)ではAとBの間に力の差があ ると判断でき, 2)ではAとBの間に力の差があるとは判断できない (①) 標本から得られた確率変数の値が 棄却域に入れば仮説を棄却し、 棄 域に入らなければ仮説を棄却しない 数学Ⅱ 数学 B 数学C 第6問| ベクトル 解法 内積の定義により OA・OB = |OA||OB|cos ∠AOB 1 =1x√2 x 1 2√2 2 また、点Pは辺AB を 1:2に内分する点で あるから 0 A 'B ベクトルの内積 探究 ①でない2つのベクトル なす角を90° の 180° とする と ab=a||6|cose =-3-OA+16 OB さらに, ① に代入して OQ=OA+2(-20A+16OB) =OA+OB 次に,点Rは直線OQ 上の点であるから, 実数として OR = 1OQ と表される。このとき OR = (OA+OB) -1108 +108 ベクトルの垂直条件 ①でない2つのベクトルに ついて abab=0 ・B R 学8年 解法の糸口 OQ をもとに OR をOA と OB を用いて表すことを考える さらに、 PR を AB を用いて す。

解決済み 回答数: 1
数学 高校生

解説お願いします。 右ページの『キ』が答えは⑨なのですが、解説には『キ』は答えのみしか載っていなくて、なぜ⑨になるのか分からないので、途中式含めて教えていただきたいですです。 よろしくお願いします。

(注)この科目には、選択問題があります。 数学Ⅱ, 数学 B 数学C 015779 第1問 (必答問題) (配点 15 ) (1) 次の問題Aについて考えよう。 (i) p>0のときは, 加法定理 cos(e-α)= cose cosa + sino sin α を用いると y = sin0 +pcoso= キ cos(e-α) と表すことができる。 ただし, αは 試作問題 数学Ⅱ・B・C ケ 問題A関数y = sin 8 + vscose (0≧≦)の最大値を求めよ。 sin α = COS α = 0<α< キ キ TI √3 を満たすものとする。 このとき, yは0= コ で最大値 sin/ = , COS 2 ア TT ア = 1/ り立つ。 であるから, 三角関数の合成により g=2sin(a+1/4) サをとる。 2 π y= イ | sin 0 + ア 2 (ii) p<0 のとき, yは0= で最大値 ス をとる。 T と変形できる。 よって, yは0= で最大値 I をとる。 キ ケ サ ス の解答群 (同じものを繰り返し選 ウ んでもよい。) (2)pを定数とし、次の問題Bについて考えよう。 問題B 関数 y= sin0 +pcose (O≦es/z/)の最大値を求めよ。 にく (i) p=0 のとき,yは0= で最大値 をとる。 オ (数学Ⅱ 数学 B. 数学C第1問は次ページに続く。) -2- 0 -1 1 -p P ④ 1-P 1+P ⑥-p² ⑦ p2 1-p2 1+p2 @ (1-p)² (1+p)2 コ シ の解答群 (同じものを繰り返し選んでもよい。 ) 0 ①a -3-

解決済み 回答数: 1
数学 高校生

(2)です。僕の解き方でどこが間違っているか教えてください

c 2直線の交点を通る直線の方程式 2直線 x+2y-4=0, 2x-y-30 に対して, 方程式 k(x+2y-4)+ (2x-y-3)=0 ① の表す図形とは? ただし, kは定数とする。 k=1 k=0 k=2 ① は, 連立方程式 x+2y-4=0, 2x-y-3=0 2x-y-3=0 2 の解x=2, y=1に対して常に成り立つ。 k=-1 1. x=2, y=1は2直線上の点なので x+2y-4に代入しても0 2 4 x 2x-y-3に代入しても 0 -3 x+2y-4=0 よって, kがどのような値をとっても ①は, 2直線の交点(2, 1) を通る図形を表す。 x=2, y=1 を代入したら式が成り立つので ① を x, y について整理すると (k+2)x+(2k-1)y-4k-3=0 ここで,x,yの係数k+2, 2k-1は同時には0にならない。これは直線の式なので 方程式 ① は, 2直線の交点を通る直線を表す。 (図のように,kの値によって (21) を通る直線がいろいろ決まる) ただし, 直線 x+2y-4=0は表さない。 (式) = 0 の形で表された2直線について k(式1こ目) + (式2こ目) = 0 は,交点を通る直線である。 例8 2直線x+2y-4=0, 2x-y-3=0の交点と点(-1, 5) を通る直線の方程式は? を定数としてk(x+2y-4)+(2x-y-3)=0 とすると,①は2直線の交点を通る直線を表す。 この直線が点(-1, 5) を通るとすると, ① に x=-1, y=5を 代入して ゆえに 5k-10=0 k=2 これを①に代入して整理すると 4x+3y-11=0 ①のなかから,(-1,5) を通る 「当たり」 の直線を見つけている。 [終]

解決済み 回答数: 1
1/25