学年

教科

質問の種類

化学 高校生

(6)の問題がわかりません。答えの求め方を教えてもらえると嬉しいです。

18 第1編物質の構成と化学結合 基本例題 4 原子とイオンの構造 18 解説動画 (1) 塩素原子 C1 について, 35, 17 はそれぞれ何を表しているか。 (2)塩素原子 CIについて、陽子, 中性子, 電子の数を答えよ。 ノード (3)(1)と(2)の塩素原子の関係を何というか。また,陽子,中性子,電子のうち,(1)と (2)の塩素原子において数が異なるものはどれか。 (4) (1)の原子の電子配置を、例のように記せ。例 窒素原子 K(2)L(5) (5) (2)の原子はどのようなイオンになるか。 化学式で記せ。 (6) カリウム原子Kがイオンになったとき, (5) のイオンと同じ数になっているの は,陽子,中性子, 電子のどれか。 すべてあげ, その数とともに答えよ。 指針 (1)~(3) 陽子の数で元素が決まる。 陽子の数を原 原子番号= 陽子の数=電子の数 子番号といい, 元素記号の左下に記す。 陽子と 質量数=陽子の数+中性子の数 中性子の数の和を質量数といい, 元素記号の左上に記す。 (4)~(6) 電子はふつう, 内側の電子殻から順に配置されていく。 収容できる電子の最 大数は,K殻2個, L殻8個, M殻18個・・・である。 価電子の数が少ないとそれを 失って陽イオンに, 価電子の数が多いと電子を受け取って陰イオンになる。 解答 (1) 35: 質量数, 17: 原子番号 (2) 陽子: 17, 中性子: (37-17) 20, 電子: 17 (3)同位体,中性子 (4) K(2)L(8)M(7) (5) C1 (6) 中性子: 20, 電子:18 第1編

未解決 回答数: 0
数学 高校生

75番のアではなぜ3分の1×3分の2の4乗ではダメなのでしょうか

'73 (1) ある問題をAさん このとき、2人とも解ける確率は, A さんが解けて、Bさんが解け 確率はである。 (2)1個のさいころを6回連続で投げるとき, 5以上の目がちょうど2回出る 率は である。 (3) 10本中3本が当たりのくじを, A,Bの2人が順番に1本ずつ引く。 ただい 引いたくじは元に戻さないものとする。 Aが当たったとき, Bも当たる条件 き確率はであるから, AとBの両方が当たる確率はである。 また,Bが当たる確率はである。 14) 100円硬貨3枚を同時に投げて、表が出た硬質を全部もらえるゲームがある 1回のゲームで受け取る金額の期待値は 円である。 74 袋Aには赤玉3個,白玉2個, 袋Bには赤玉2個, 白玉3個が入っている。 (1)袋Aから1個の玉を取り出して袋Bに入れ、よくかき混ぜて,袋Bから1個 の玉を取り出すとき,袋Bから取り出した玉が赤玉である確率は である。 (2)袋Aから2個の玉を取り出して袋Bに入れ、よくかき混ぜて, 袋Bから2個 の玉を取り出すとき, 袋Bから取り出した玉が2個とも赤玉である確率は である。 〔18 東京慈恵会医大] 775 1,2,3の数字が1つずつ書かれたカードが各1枚, 合計3枚のカードが箱に 入っている。この箱から1枚のカードを取り出し、書かれた数字を記録して,も とに戻す。この試行を5回繰り返すとき,記録される5個の数の最大値が2であ る確率は であり、5個の数の和が8である確率は である。 (と) (15 南山大〕 '76 ある製品が不良品である確率は3%であり,この製品の品質検査では、不良 品なのに誤って不良品ではないと判定されてしまう確率が1%, 不良品ではない のに誤って不良品と判定されてしまう確率が10% であるという。 このときこ の製品が品質検査で不良品と判定される確率を求めるとである。また,不 良品と判定された製品が実際には不良品ではない確率を求めるとである。 54 数学 A () [23 南山大〕 *44 1 以上 以下 (1)

未解決 回答数: 1
数学 高校生

(3)の問題の解説の最後の4ってどこから来たんですか?教えてください!!お願いします

事柄E の起こり方が通りあり、その おのおのの起こり方に対して事柄 F の起こ り方がn通りあるとき, 「E, Fがともに (あるいは続けて) 起こる場合の数」 は mn 通り ば,求める記入の仕方が得られる. (3) まず, 8つの数の和が偶数となるのはどのような ときか考えよう. 一般に,偶数,奇数の和の偶奇について, (偶数) + (偶数) = (偶数), (奇数)+(奇数) = (偶数), 積の法則 (偶数)+(奇数)=(奇数) を用いると,一番左の縦の列の記入の仕方は 3.26通り である. である. 他の縦の列の記入の仕方も同様にそれぞれ6通 りであるから, 再び積の法則を用いると, 記入の仕 方は全部で となる. 6.6・6・6=6通り (2) 1,2,3 すべての数字を用いて記入したものを直 接数え上げようとすると, 1, 2, 3 をそれぞれいく つずつ用いて記入するか場合分けをして計算するこ とになり、やや面倒である. そこで解答では, (1)で求めた記入の仕方が (i) 1, 2, 3 すべての数字を用いる場合, さらに,(2)の記入の仕方では, 2 (偶数) の記入 されるマス目の個数が1以上4以下であることに 着目して, 「2 (偶数)」 と 「1または3 (奇数)」が それぞれいくつ記入されるかと,そのときの8つ の数の和の偶奇を表にすると,次のようになる。 2 (偶数) 1または3 (奇数) 8つの数の和の偶奇 1つ 2つ 3つ 4つ 7つ 6 つ 5つ 4つ 奇数偶数 奇数偶数 よって、8つの数の和が偶数となるような記入の 仕方には,次の(ア)(イ) の2つの場合がある. (ア) 221または3を6つ記入する場合. (イ) 2を4つ 1または3を4つ記入する場合. 解答では、(ア)の記入の仕方を 2 2 2つの2を記入 2列の上段または下段に 一方,縦の列に記入する数字の組合せに着目し, 次のように解くこともできる. (3)の別解) 縦の列に記入する数字の組合せは {1, 2}, {1,3}, {2,3} の3組あり, 2が記入されている縦の列 2 3 の残りのマス目に 1 2 1または3を記入 2 3 3 1 残りの縦2列に 1 1 2 3 1または3を記入 の順に考えた. それぞれの記入の仕方は順に 4C2・22=24通り, 2・2=4通り, 24通り であるから, (ア)の記入の仕方は である. 24.4.4=384 通り また、(イ)の記入の仕方を 2 2 22 縦 4列の上段または下段に 4つの2を記入 残りの4マスに1または3 {1, 2} の2数の和3は奇数, {1,3} の2数の和4は偶数, {2,3} の2数の和5は奇数 であることに着目すると、 表に書かれている8つ の数の和が偶数となるような記入の仕方には,次の (ウ),(エ)の2つの場合がある. (ウ){1,3} で縦 2列, {1, 2} または {2, 3} で縦 2列を記入する場合. {1,3} で縦 2列を記入する仕方を考える. 記入する縦の列を4列から2列選び,さらに, それぞれ1, 3 を表の上段, 下段に記入すると考 えると, {1,3} で縦2列を記入する仕方は 2・22=24通り 次に,この記入の仕方それぞれに対し、残った 縦2列を {1, 2} または {2,3} で記入する仕方 を考える. 記入する数字の組合せの選び方が22通りあ り,それぞれに対して表の上段, 下段への記入の 仕方が 22通りあるから, 縦 2列を {1, 2} また は{2,3} で記入する仕方は

未解決 回答数: 1
1/107