学年

教科

質問の種類

数学 高校生

大問105だけ、はさみうちの原理使ってるんですけど、使うときと使わない時の判断ってどうやってるんですか?式のどの部分を見たら「はさみうち」使って解く!って分からんですか?

第2章 極限 三角関数と極限 1 関数の極限と大小関係 limf(x) =α, limg(x) =β とする。 xa pix 1 xがαに近いとき,常に f(x) ≦g(x)ならば a≦β 2xがαに近いとき,常に f(x) (x)g(x) かつα=β ならば limh(x)=a 注意 上の事柄は,x→∞, x→∞の場合にも成り立つ。 ■ 次の極限を求めよ。 [104, 105] 1-cos 3x □ 104(1) lim x→0 x2 1 *105(1) limxcos 0+x x 第2節 関数の極限 31 0 (2) lim sinx2 x01−cosx (2) lim 1+sinx XII∞ x 第2章 極限 注意2を「はさみうちの原理」 ということがある。 例題 3 limf(x)=∞ のとき,十分大きいxで常に f(x)≦g(x) ならば limg(x) =∞ |2 三角関数と極限 sinx lim x0 x x =1, lim -1 (角の単位はラジアン) x-0 sinx STEPA 中心が 0, 直径 ABが4の半円の弧の中点をMとし, Aから出た光線 が弧 MB 上の点Pで反射して, AB上の点Qにくるとする。 (1) 0=∠PAB とするとき, OQ の長さを0で表せ。 (2) PBに限りなく近づくとき, Qはどんな点に近づいていくか。 |指針 Aから出た光線か MB上の点Pで反射して, AB上の点Qにくるとき ∠OPA = ∠OPQ sin O 求めるものを式で表し、 などの極限に帰着させる。 解答 (1) 右の図において ✓ 99 次の極限を調べよ。 ZOQ= ∠OPA=∠OAP=0 ∠PQB= ∠PAQ+ ∠APQ=30 M 2 (1) lim cos- *(2) lim (3)lim x tanx x–0 sinx よって ∠OQP=30 △OPQに正弦定理を用いると,P=2 であるから 30 0 Q B ■次の極限を求めよ。 [ 100~103] ✓ 100 (1) lim x→0 sin 4x XC sin2x *(2) lim x-0 sin5x (3) lim x-0 tant sin3x tan2x-sinx □ 101 (1) lim- *(2) lim x→0 x 1-cos 2x x-0 xsinx (3) lim x→0 sin3x+sinx sin2x □ 102(1) lim COS X x-Sin2x (2) lim- sin2x (3) lim x01−cosx 103*(1) lim tan x X10 x *(4) lim- sinлx x-1 x-1 1−cosx t- sinx STEPB *(2) lim X→π OQ 2 sin O sin(-30) また, sin (π-30)=sin30 であるから 2sin OQ= sin 30 (2)PがBに限りなく近づくとき, 0 +0 である。 このとき 2 sin 2 sin 3 2 lim OQ= lim lim 8+0 o sin 30 0-40 3 0 sin 36 3 よって,Qは線分 OB上の0からの距離にある点に近づいていく。圏 □ 106 半径αの円周上に動点Pと定点Aがある。 Aにおける接線上に AQ=AP であるような点Qを直線OAに関してPと同じ側にとる。PがA PQ に限りなく近づくとき, AP の極限値を求めよ。 ただし,Pは ∠AOP (0<< AOP < 1)に対する弧AP の長さを表す。 sin(x-7) x-π (3) lim x-- tanx xn ax+b 1 sin(sinx) (5) lim x→0 sinx 1 107 等式 lim (6) limxsin COS x 2x が成り立つように, 定数a, b の値を定めよ。

未解決 回答数: 1
物理 高校生

画像の問題の答えを教えてください。お願いします!

1図のように,音波をよく反射する高さH の鉛直断崖の下部にトンネルがある。 トンネ ルの手前、入口からの距離がXの地点をPと する。 一定の速さでトンネルに近づいてき た列車の先頭が, 時刻t=0に地点Pを通過 した。 その瞬間に列車の先頭にある振動数 fo の警笛が鳴り始め, 列車の先頭がトンネルに 進入した瞬間に警笛は鳴り終えた。 列車の先頭から距離Lだけ離れた客車中に 10000 0000 000 ・X 1図 B トンネル はA君が,また断崖上の縁にはB君がいる。 A君には振動数がと(く)の2 一つの異なる高さの警笛音が届いた。 一方, B君には振動数の警笛音が届いた。 以 下の問いに答えよ。 ただし, 音の速さはVである。 また, 列車の高さ, トンネルの大き さ, A君およびB君の背の高さは無視してよい。 (1) A君には警笛音がどのように聞こえたか。 次のア~エの中から正しいものを1つ選 べ。 (ア) まず低い方の振動数の警笛音が聞こえ、 少しして振動数 f2の警笛音が混じ りうなりが聞こえた。 その後、うなりが消えると同時に何も聞こえなくなった。 (イ)まず低い方の振動数の警笛音が聞こえ、少しして振動数の警笛音が混じ りうなりが聞こえた。 その後, まずうなりが消え,振動数 f2の警笛音が少しの間 残ったのちに何も聞こえなくなった。 (ウ)まず高い方の振動数 2 の警笛音が聞こえ、少しして振動数の警笛音が混じ りうなりが聞こえた。 その後, うなりが消えると同時に何も聞こえなくなった。 (エ) まず高い方の振動数 f2の警笛音が聞こえ、 少しして振動数 f の警笛音が混じ りうなりが聞こえた。 その後, まずうなりが消え, 振動数の警笛音が少しの間 残ったのちに何も聞こえなくなった。 (2) u, V を用いて表せ。 と2をfo, f B (3) 振動数 の警笛音がA君に届いた時刻 ウ A1 A2 を求めよ。 fo エ (4) B君に聞こえた警笛音の振動数は時間とと もにどのように変化したか。 2図のア~カの中か ら正しいものを1つ選べ。 オ (5) B君に警笛音が聞こえ始めた時刻 t を求めよ。 聞こえ 聞こえ 始める時刻 (6) B君に警笛音が聞こえた時間間隔は警笛が鳴っ 終わる時刻 図 ていた時間間隔よりどれだけ短いか, あるいは長いかを答えよ。 (7) 断崖の高さH が距離 Xに等しく, 列車の速さが のとき, B君にはA君の何 V 10 倍の時間だけ警笛音が聞こえるか。

回答募集中 回答数: 0
物理 高校生

解答お願いします

1図のように, 音波をよく反射する高さH の鉛直断崖の下部にトンネルがある。 トンネ ルの手前, 入口からの距離がXの地点をPと する。 一定の速さでトンネルに近づいてき た列車の先頭が, 時刻1=0に地点を通過 した。その瞬間に列車の先頭にある振動数。 の警笛が鳴り始め, 列車の先頭がトンネルに 進入した瞬間に警笛は鳴り終えた。 列車の先頭から距離 Lだけ離れた客車中に 00000 図 H トンネル はA君が,また断崖上の縁にはB君がいる。 A君には振動数がと つの異なる高さの警笛音が届いた。一方, B君には振動数の警笛音が届いた。 以 下の問いに答えよ。 ただし, 音の速さはVである。 また, 列車の高さ, トンネルの大き さ, A君およびB君の背の高さは無視してよい。 (1) A君には警笛音がどのように聞こえたか。 次のア~エの中から正しいものを1つ選 べ。 (ア) まず低い方の振動数の警笛音が聞こえ、 少しして振動数の警笛音が混じ りうなりが聞こえた。 その後、うなりが消えると同時に何も聞こえなくなった。 (イ)まず低い方の振動数の警笛音が聞こえ、 少しして振動数チュの警笛音が混じ りうなりが聞こえた。 その後, まずうなりが消え、振動数の警笛音が少しの間 残ったのちに何も聞こえなくなった。 (ウ)まず高い方の振動数の警笛音が聞こえ、少しして振動数の警笛音が混じ りうなりが聞こえた。 その後、うなりが消えると同時に何も聞こえなくなった。 (エ)まず高い方の振動数の警笛音が聞こえ、 少しして振動数の警笛音が混じ りうなりが聞こえた。 その後, まずうなりが消え, 振動数の警笛音が少しの間 残ったのちに何も聞こえなくなった。 (2) for 14, V を用いて表せ。 fB ア (3) 振動数の警笛音がA君に届いた時刻 A1 A2 を求めよ。 ウ (4) B君に聞こえた警笛音の振動数は時間とと もにどのように変化したか。 2図のア~カの中か ら正しいものを1つ選べ。 In エ 聞こえ カ (5) B君に警笛音が聞こえ始めた時刻 を求めよ。 (6) B君に警笛音が聞こえた時間間隔は警笛が鳴っ 始める時刻 2図 ていた時間間隔よりどれだけ短いか, あるいは長いかを答えよ。 V 聞こえ 終わる時刻 7)断の高さが距離 Xに等しく,列車の速さが 1/10 のとき, B君にはA君の何 倍の時間だけ警笛音が聞こえるか。

回答募集中 回答数: 0
1/185