学年

教科

質問の種類

生物 高校生

⑴の問題で、検定交雑により生じた子だと各遺伝子が連鎖しているか判断できる理由がわかりません。検定交雑はなぜするのですか?

基本例題 4 遺伝子の独立と連鎖 リード 解説動画 ある植物がもつ3対の対立遺伝子 (A とa, B と b, C とc) について, 顕性ホモ接合の個体と潜性ホモ接合の個体を交配して, F, (雑種第1代) をつくっ た。 この F を検定交雑したところ, 表のような結果が得られた。 表現型 [ABC] [ABc] 分離比 7 2 [AbC] [Abc] [aBC] [aBc] [abC] [abc] 2 7 7 2 2 7 (1) 連鎖している遺伝子の組み合わせとして, 最も適当なものを次の(ア)~(ケ)のうち から1つ選べ。 AとBのみ (ア) A と B のみ (エ) α とものみ AABB C C (イ)AとCのみ (ウ)BとCのみ の親から生じ (オ) a とcのみ (カ b c のみ 第1章 生物の進化 2 ② a (キ) AとC, a とc (ク) AとB, aとb (ケ) B と C, b とc (2) 連鎖している遺伝子間の組換え価を, 小数第1位を四捨五入して答えよ。 指針 (1) F, は, 顕性ホモ接合の個体(AABBCC) を潜性ホモ接合の個体(aabbcc) と交配して 生じた子, つまり, 検定交雑により生じた子なので, F, の表現型の分離比から, 各遺伝子が連鎖しているかどうかを判断できる。 [AB]: [Ab]: [aB]: [ab]=9:9:9:9=1:1:1:1→AとB(aとb)は独立 [AC]: [Ac]: [aC]: [ac]=9:9:9:9=1:1:1:1 →AとC(a とc)は独立 [BC] [Bc] [bC] [bc] = 14:4:4:14 = 7:2:2:7B と C(b と c) は連鎖 組換えを起こした配偶子の数 (2) 組換え価(%) 全配偶子の数 = 22.22...(%) 解答 (1) ケ (2) 22% 4 +4 x 100 = x 100 14 + 4 + 4 + 14

未解決 回答数: 1
生物 高校生

問題文から何を言っているのか全くわからないです。問題を解く時の考え方など教えて欲しいです🙇‍♀️🙇‍♀️

30 30 発展 25 次の文章を読み、 以下の問いに答えよ。 細胞分画法は,細胞小器官の大きさや重さ の違いを利用し、細胞小器官やそれ以外の成 分を分離する方法である。 ある動物細胞から, 次のような細胞分画法(図1)で, 細胞小器官 を分離した。 細胞破砕液 遠心分離 1000g 上澄みal 遠心分離 20000g 上澄み可 沈殿A 遠心分離 150000g 上澄みc 沈殿B まず 4℃の環境のもと, 適切な濃度の スクロース溶液中で細胞をすりつぶし, 細胞 破砕液をつくった。 次に,細胞破砕液を試験 管に入れて, 1000g(gは重力を基準とした遠 心力の大きさを表す) で10分間遠心分離し、 沈殿 A と上澄みa を得た。 これらを光学顕 微鏡で観察したところ, 沈殿Aには核と未 破砕の細胞が含まれていたが,上澄みa 表1 各沈殿・上澄み中の酵素Eの活性(U) 沈殿C 図1 細胞分画法 沈殿 A 134 U 上澄み a XU 沈殿 B 沈殿 C 463 U 6U 上澄み b 上澄み YU 25 U には,これらは含まれていなかった。 上 澄みをすべて新しい試験管に移し、 20000g 20分間遠心分離し, 沈殿B と上澄み bに分けた。 さらに, 上澄み b をすべて新しい試験管に移し, 150000g で180分間遠心分離し、 沈殿Cと上澄み に分けた。次に,各沈殿と各上澄みについて 呼吸に関する細胞小器官に存在する 酵素の活性を測定し,表1に示す結果を得た。 なお表中のU(ユニット)は酵素 E

回答募集中 回答数: 0
化学 高校生

化学の問題教えてください お願いします 写真の(3)、(4)、(5)の問題をそれぞれ途中式も含めて教えてください。 よろしくお願いします

〔注意〕 必要があれば,原子量は次の値を用いよ。 H, 1.00; C, 12.0; N, 14.0%; O, 16.0; Si, 28.0 次の文章を読み, (1)~(5)の問いに答えよ。 気体の質量をw[g], モル質量をM [g/mol] とすれば、その物質量はア [mol]である。気体の圧力 を P〔Pa〕,体積を V〔L〕,温度をT[K],気体定数を R [Pa・L/(K・mol)] とすると,理想気体の状態方程式 よりM=イ [g/mol] が得られる。 つまり、気体の圧力P, 体積V,温度T 質量w を測定すれば,そ の気体の分子量を求めることができる。 以上を踏まえて、常温常圧で液体である純物質Xの分子量を次の 実験から求めた。 小さい穴をあけたアルミニウム箔でふたをした内容積100mL 容器 (図1)を乾燥させ, 室温 (27℃)で質量をはかったところ 49,900gであった。 この容器に約2ml のXを入れ, 容器を図2 のように水に浸して加熱を始めた。 30分加熱すると容器内の液 体が見られなくなり、容器内はXの蒸気で満たされた。 この時 の水温は97℃, 大気圧は1.00 × 105 Paであった。 容器を取り出 して外側に付着した水を乾いた布でよく拭き取り,その容器を室 温 (27℃) まで放冷して再び質量をはかったところ 50.234gであった。 図1 ・小さい穴 -アルミニウム箔 ・内容積100mL の容器 水 図2 Xの蒸気を理想気体とみなし、 気体定数を8.31 × 103 Pa・L/(K・mol) とする。 放冷後に容器内で凝縮した Xの体積は無視できるものとする。 X の蒸気圧は27℃で 0.20×105 Pa, 97℃で2.00×105 Pa である。 (1)空欄とイに適した式を答えよ。 (2) 空気は、窒素と酸素が物質量の比4:1で混合した気体と考えられる。 空気の平均分子量を求め, 小数 第1位まで記せ。 導出過程も記せ。 (3)下線部で物質Xの質量を測定する必要がない理由を50字以内で記せ。 (4) Xの蒸気圧を考慮せずに分子量を求め, 整数値で答えよ。 (5) Xの蒸気圧を考慮して分子量を求め, 整数値で答えよ。 導出過程も記せ。

回答募集中 回答数: 0
1/285