学年

教科

質問の種類

数学 高校生

89.2 2の解答の図での赤の直線と黒の直線はそれぞれ何を表しているのですか?

442 の 基本例題89 方べきの定理とその逆を利用した証明問題 ①①000 (1) 鋭角三角形ABC の各頂点から対辺に, それぞれ垂線 AD, BE, CF を引き それらの交点(垂心)をHとするとき, AH HD=BH・HE=CH ・HF が成り立 類 広島修道大 つことを証明せよ。 (2) 2点 Q R で交わる2円がある。 直線 QR 上の点Pを通る2円の弦をそれぞ れ AB, CD (または割線を PAB, PCD) とするとき, A, B, C, D1つ 周上にあることを証明せよ。 ただし, A, B, C, D は一直線上にないとする。 440 基本事項 ① ②2 重要90 指針(1) 直角2つで円くなる により, 4点B,C,E,F は1つの円周上にある。 ゆえに, 弦 BE と弦 CF で 方べきの定理 が利用できて BH ・HE=CH・HF 同様にして, AH・HD=BH・HE または AH・HD=CH・HF を示す。 (2) PA・PB=PC・PD ・・・・・・ (*) であることが示されれば, 方べきの定理の逆により、 題意は証明できる。 ! よって, (*)を導くために, 弦AB と弦 QR, 弦 CD と弦 QR で方べきの定理を使う。 ゆるめ 【CHART 接線と割線, 交わる2弦・2割線で方べきの定理 Senpo. 解答 (1) ∠BEC=∠BFC = 90° であるから, 4点B, C, E, F は1つの円周上に ある。 よって, 方べきの定理により BH ・HE = CH・HF (3) 1 TE 同様に, 4点A, B, D, E は 1つの AFB 円周上にあるから AH ・HD=BH ・HE ① ② から (2) 2円について AH ・HD=BH・HE=CH・HF 89 PA・PB=PQ・PR, PC・PD=PQ・PR PA・PB=PC・PD ゆえに よって, A, B, C, D は 1つの円周 上にある。 B A A F C E B C D PBS)5453 14-10-89-12 方べきの定理 直角2つで円くなる D 弦BEと弦CF に注目。 <∠ADB=∠AEB=90° 弦 AD と弦BE に注目。 方べきの定理の逆 (1) 円に内接する四角形 ABCD の対角線の交点EからAD に平行線を引き, 直 線BCとの交点をFとする。 このとき, F から四角形ABCD の外接円に引 た接線FGの長さは線分FFの長さに 7 ( に し

回答募集中 回答数: 0
数学 高校生

(2)PQ²=のとこの式がどういう考え方をしているか分からないので教えて下さい!

97 双曲線となり再] [L] 考え方 直線とx軸正方向とのなす角は0であるから,この傾き 解答 (1) l の方程式はy=(x-1) tan0 だか これをCの方程式に代入すると 2x²-2(x-1)*tan²0=1 tandt (t = 0, ±1) とおいて整理して in 2(1-1²)x²+4tx=(1+2+³)=0 ①の判別式をDとすると D -=(21²)²-2(1-t²){−(1+2t²)} = 2(1+t²) >0 4 よって, ① は異なる2つの実数解をもつから 直線は双曲線 Cと相異なる2点で交わる。 (証終) (2) ①の2つの解をα, β とすると, 解と係数の関係から a+β=- aß=-- 2t² 1-² この傾きはf(=tan) であるから」 mimimi PQ2=(1+t)(a-B)^²=(1+t){(α+B)-4aB} =20 22 =(1+(-12 ) +4.1+24 1+tan²0 \2 1-tan²0 2 cos2 20 (3) (2) から RS'= 核心は 1+2t² 2(1-1²) なす角か = 2 ココ!- Ò cos²20+ sin 20 PQ2 ++ + 2 2(1-t)] cos20 + sin20 \2 cos²0-sin³0 2 = cos³2 (0+) sin ²20 T ・① 2(1+1²)² (1-1²)² =1/1/2=(一定)(証終) 第10章 式と曲線 曲 第33匹 解答は158ページ 97 Lv.★★★ C を双曲線 2x2-2y2=1とする。 l, mを点 (1, 0) を通り, x軸とそれ れ0.0 +4の角をなす2直線とする。 ここではの整数倍でないとす (1) 直線1は双曲線 C と相異なる2点PQで交わることを示せ。 (2) PQ2, 0 を用いて表せ。 (3) 直線と曲線Cの交点をR, Sとするとき, (火) らない定数となることを示せ。 PO² + +42/ RS2 は0に (筑波) 98 Lv.★★★ 解答は159ページ 楕円+y^2=1上の点をP(3cosa, sina) (Osas)とし、原点O 点Pを結ぶ線分とx軸の正の部分のなす角を0とするとき、次の各問に よ ー (1) 線分 OP の長さが 3 以上になるの範囲を求めよ。 √5 (2) α-0の最大値を求めよ。 99 Lv.★★★ 座標平面上の楕円 +10=1 -=1 (a>b>0)について, 以下の問いに答えよ (1) x座標が小さい方の焦点Fを極とし, F からx軸の正の方向へ向かう 半直線を始線とする極座標 (r, 9) で表された楕円の極方程式 r = f(0) を求めよ。また、点Fを通る楕円の弦を AB とし,線分 FA および FB の長さをそれぞれ, B とするとき 11 の値は定数となること 群馬大 解答は160ページ .....................

回答募集中 回答数: 0
数学 高校生

(2)PQ²=のとこの式がどういう考え方をしているか分からないので教えて下さい!

97 双曲線となり用 考え方 直線とx軸正方向とのなす角は0であるから,この傾き 解答 (1) l の方程式はy=(x-1)tan0だか ら,これをCの方程式に代入すると 2x²-2(x-1)² tan²0 = 1 tan Qt (t = 0, ±1) とおいて整理して 2(1-t2)x2+4t2x- (1+2t) = 0 ①の判別式をDとすると D= (2+²)²2-2 (1-t²){-(1 + 2t²)} = 2(1 + t²) > 0 4 21² aβ= 1-t². この傾きは t(=tan) であるから」 よって, ① は異なる2つの実数解をもつから、直線は双曲線 Cと相異なる2点で交わる。 (証終) (2) ①の2つの解をα, β とすると, 解と係数の関係から 1+2t2 α+β=- 2(1-t²) _PQ2=(1+t)(a-B)2=(1+t){(a+β)²-4aß} 2(1-t)] = 2 (1+tan ²)² = 2(cos²0+ sin²0 ² \2 1-tan²0 A-sin20 2 cos220 22 \2 = 0+1"){(-2+²)* +4. 21+2²}-20+1² 答 G (3) (2)から, RS' = 回核心は ココ! なす角 2 cos¹2(0+5)= 4 1 1 cos220 PQ+= cos 20+ sin 20 PQ² RS2 2 2 11 2 sin ²20 0 なので G 1/12 (一定)(証終 F F H 第10章 式と曲線 第33回 97 Lv.★★) 解答は158ページ C を双曲線 2x2-2y2=1とする。 l,mを点 (10) を通り, x軸とそれ れ 0.0+匹の角をなす2直線とする。 ここで0はの整数倍でないとす CLOS 4 (1) 直線は双曲線 C と相異なる2点P, Qで交わることを示せ。 (2) PQ³ 2. を用いて表せ。 10 AN (3) 直線と曲線Cの交点をRSとするとき, らない定数となることを示せ。 98 Lv.★★★ 楕円 2 x² 曲 (1) 線分 OP の長さが 3 √5 (2) | α-0 の最大値を求めよ。 99 Lv.★★★ 座標平面上の楕円 解答は159ページ +y2=1上の点をP (3cosα, sinα) (0≦a≦ 2) (0≦a≦△)とし、原点O 32 + 点Pを結ぶ線分とx軸の正の部分のなす角を0とするとき,次の各問に答 えよ。 XORA y² 62 は42, + ・は0に (筑波) PQ² RS² の長さをそれぞれA, YB とするとき, 以上になる0の範囲を求めよ。 (群馬大 解答は160ページ・ a² =1 (a>b>0)について,以下の問いに答えよ (1)x座標が小さい方の焦点Fを極とし, F から x軸の正の方向へ向かう 半直線を始線とする極座標 (r, 9) で表された楕円の極方程式 r = f(0) を求めよ。 また, 点Fを通る楕円の弦を AB とし,線分 FAおよび FB 1 1 + rB の値は定数となること

回答募集中 回答数: 0
物理 高校生

わからないので教えていただけると幸いです🙇‍♀️

2. 以下の文中の( )に最も適する式・数値を答えよ。 右上の図のように、 速さぃ、半径r で等速円運動する物体の速度ベク トルの向きは時間とともに常に変化するので、 等速円運動する物体は加 速度を持っている。 下図は、上図で物体が基準線から角0だけ回転した 位置にある点Aから点Bに角 40だけ移動したときの、それぞれの速 度ベクトルを拡大して書き出したものであり、その速度変化は下図の4 vとなる。この間の移動時間を4t とすると、このときの平均の加速度 の大きさは(1) である。また、二つの速度ベクトルの間の角は上図における角 (2) に等し い。 その後、時間がたつにつれて速度ベクトルは半径の円を描くように 動いていくので、 速度変化 4vは速度ベクトルが描く円の弦になってい ることがわかる。 時間 4t が十分小さいときには角 (2) も十分小さい。し たがって、このとき弦の長さは円弧の長さに等しいとみなすことができ るので、Av とぃおよび (2) の関係は角度の単位 [rad] の定義より、Av ≒(3)と近似できる。 これを(1) に代入して⊿v を消去すると物体の瞬 間的な加速度の大きさが得られ、 α= (4) である。ここで、 角速度 ① の定義より、 At で表すとω = (5) であるから、加速度 αはひおよびを用いて α = (6) と書ける。 また、 ひとの関係は v = (7) だから、これを用いてαを半径r および角速度 の だけで表すと、α= (8)となる。また、 逆に v = (7) より α = (6) の を消去して、 α を半径rおよび速さvだけで表 すと、α= (9) となる。 加速度の向きは半径方向中心向きなので、このαを特に向心加速度と呼 を (2) と Toda Av 1 V ABA 0 2

回答募集中 回答数: 0
物理 高校生

円運動の基礎的な問題です💦 答えだけで大丈夫なので教えてほしいです💦

2. 以下の文中の( )に最も適する式・数値を答えよ。 右上の図のように、 速さぃ、半径r で等速円運動する物体の速度ベク トルの向きは時間とともに常に変化するので、 等速円運動する物体は加 速度を持っている。 下図は、上図で物体が基準線から角0だけ回転した 位置にある点Aから点Bに角 40だけ移動したときの、それぞれの速 度ベクトルを拡大して書き出したものであり、その速度変化は下図の4 vとなる。この間の移動時間を4t とすると、このときの平均の加速度 の大きさは(1) である。また、二つの速度ベクトルの間の角は上図における角 (2) に等し い。 その後、時間がたつにつれて速度ベクトルは半径の円を描くように 動いていくので、 速度変化 4vは速度ベクトルが描く円の弦になってい ることがわかる。 時間 4t が十分小さいときには角 (2) も十分小さい。し たがって、このとき弦の長さは円弧の長さに等しいとみなすことができ るので、Av とぃおよび (2) の関係は角度の単位 [rad] の定義より、Av ≒(3)と近似できる。 これを(1) に代入して⊿v を消去すると物体の瞬 間的な加速度の大きさが得られ、 α= (4) である。ここで、 角速度 ① の定義より、 At で表すとω = (5) であるから、加速度 αはひおよびを用いて α = (6) と書ける。 また、 ひとの関係は v = (7) だから、これを用いてαを半径r および角速度 の だけで表すと、α= (8)となる。また、 逆に v = (7) より α = (6) の を消去して、 α を半径rおよび速さvだけで表 すと、α= (9) となる。 加速度の向きは半径方向中心向きなので、このαを特に向心加速度と呼 を (2) と Toda Av 1 V ABA 0 a

回答募集中 回答数: 0
物理 高校生

写真の問題をお願いします💦 答えだけで大丈夫です!!

2. 以下の文中の( )に最も適する式・数値を答えよ。 右上の図のように、 速さぃ、半径r で等速円運動する物体の速度ベク トルの向きは時間とともに常に変化するので、 等速円運動する物体は加 速度を持っている。 下図は、上図で物体が基準線から角0だけ回転した 位置にある点Aから点Bに角 40だけ移動したときの、それぞれの速 度ベクトルを拡大して書き出したものであり、その速度変化は下図の4 vとなる。この間の移動時間を4t とすると、このときの平均の加速度 の大きさは(1) である。また、二つの速度ベクトルの間の角は上図における角 (2) に等し い。 その後、時間がたつにつれて速度ベクトルは半径の円を描くように 動いていくので、 速度変化 4vは速度ベクトルが描く円の弦になってい ることがわかる。 時間 4t が十分小さいときには角 (2) も十分小さい。し たがって、このとき弦の長さは円弧の長さに等しいとみなすことができ るので、Av とぃおよび (2) の関係は角度の単位 [rad] の定義より、Av ≒(3)と近似できる。 これを(1) に代入して⊿v を消去すると物体の瞬 間的な加速度の大きさが得られ、 α= (4) である。ここで、 角速度 ① の定義より、 At で表すとω = (5) であるから、加速度 αはひおよびを用いて α = (6) と書ける。 また、 ひとの関係は v = (7) だから、これを用いてαを半径r および角速度 の だけで表すと、α= (8)となる。また、 逆に v = (7) より α = (6) の を消去して、 α を半径rおよび速さvだけで表 すと、α= (9) となる。 加速度の向きは半径方向中心向きなので、このαを特に向心加速度と呼 を (2) と Toda Av 1 V ABA 0 2

回答募集中 回答数: 0
物理 高校生

答え合わせがしたいので ()の中の答えを教えてください!

2. 以下の文中の( )に最も適する式・数値を答えよ。 右上の図のように、 速さぃ、半径r で等速円運動する物体の速度ベク トルの向きは時間とともに常に変化するので、 等速円運動する物体は加 速度を持っている。 下図は、上図で物体が基準線から角0だけ回転した 位置にある点Aから点Bに角 40だけ移動したときの、それぞれの速 度ベクトルを拡大して書き出したものであり、その速度変化は下図の4 vとなる。この間の移動時間を4t とすると、このときの平均の加速度 の大きさは(1) である。また、二つの速度ベクトルの間の角は上図における角 (2) に等し い。 その後、時間がたつにつれて速度ベクトルは半径の円を描くように 動いていくので、 速度変化 4vは速度ベクトルが描く円の弦になってい ることがわかる。 時間 4t が十分小さいときには角 (2) も十分小さい。し たがって、このとき弦の長さは円弧の長さに等しいとみなすことができ るので、Av とぃおよび (2) の関係は角度の単位 [rad] の定義より、Av ≒(3)と近似できる。 これを(1) に代入して⊿v を消去すると物体の瞬 間的な加速度の大きさが得られ、 α= (4) である。ここで、 角速度 ① の定義より、 At で表すとω = (5) であるから、加速度 αはひおよびを用いて α = (6) と書ける。 また、 ひとの関係は v = (7) だから、これを用いてαを半径r および角速度 の だけで表すと、α= (8)となる。また、 逆に v = (7) より α = (6) の を消去して、 α を半径rおよび速さvだけで表 すと、α= (9) となる。 加速度の向きは半径方向中心向きなので、このαを特に向心加速度と呼 を (2) と Toda Av 1 V ABA 0 2

回答募集中 回答数: 0
物理 高校生

答え合わせがしたいので 穴埋めしてくださると助かります!

2. 以下の文中の( )に最も適する式・数値を答えよ。 右上の図のように、 速さぃ、半径r で等速円運動する物体の速度ベク トルの向きは時間とともに常に変化するので、 等速円運動する物体は加 速度を持っている。 下図は、上図で物体が基準線から角0だけ回転した 位置にある点Aから点Bに角 40だけ移動したときの、それぞれの速 度ベクトルを拡大して書き出したものであり、その速度変化は下図の4 vとなる。この間の移動時間を4t とすると、このときの平均の加速度 の大きさは(1) である。また、二つの速度ベクトルの間の角は上図における角 (2) に等し い。 その後、時間がたつにつれて速度ベクトルは半径の円を描くように 動いていくので、 速度変化 4vは速度ベクトルが描く円の弦になってい ることがわかる。 時間 4t が十分小さいときには角 (2) も十分小さい。し たがって、このとき弦の長さは円弧の長さに等しいとみなすことができ るので、Av とぃおよび (2) の関係は角度の単位 [rad] の定義より、Av ≒(3)と近似できる。 これを(1) に代入して⊿v を消去すると物体の瞬 間的な加速度の大きさが得られ、 α= (4) である。ここで、 角速度 ① の定義より、 At で表すとω = (5) であるから、加速度 αはひおよびを用いて α = (6) と書ける。 また、 ひとの関係は v = (7) だから、これを用いてαを半径r および角速度 の だけで表すと、α= (8)となる。また、 逆に v = (7) より α = (6) の を消去して、 α を半径rおよび速さvだけで表 すと、α= (9) となる。 加速度の向きは半径方向中心向きなので、このαを特に向心加速度と呼 を (2) と TOE D Av 1 V ABA 0 a

回答募集中 回答数: 0
1/2