学年

教科

質問の種類

数学 高校生

写真オレンジ線部の式変形が分かりません。 教えてください!!🙇

重要 例題 110 特別な角の三角比 00000 頂角Aが36°, BC=1の二等辺三角形ABC がある。 この三角 形の底角Cの二等分線と辺AB との交点をDとする。 36° (1) 線分 DB, ACの長さを求めよ。 D (2)(1)の結果を用いて, cos36° の値を求めよ。 [類 神戸学院大 ] 基本106 B 1 C CHART & SOLUTION (1) 図をかいて角の大きさを調べると,△ABC ACDB (2角が等しい) がわかる。 DB=x とおき, 相似な三角形の辺の比を利用して方程式を作る。 (2) cos 36° の値を求めるから, 36° の内角をもつ直角三角形を作る。 (1) ∠ACB=(180°-36°+2=72° であるから ∠DCB=72°÷2=36° △ABCと△CDB において ∠BAC = ∠DCB=36°, ∠ACB=∠CBD=72° (1) D 136 よって AABCOACH BC DB から 72 B 1 C BC・CD=ABDB AB CD AD=CD=BC=1 であり, DB=x とおくと AB=AD+DB=1+x であるから,①は 12=(1+x)x よって これを解いて x=-1±√5 ① 相似な三角形を抜き出すと 考えやすい。 x²+x-1=0 1+x 1+x S 2 1 1 x>0 であるからx= -1+√√5 すなわち DB= √√5-1 B 1 C D x B 2 2 √5+1 また AC=AB=1+x=- 2 (1)から (2) 辺AC の中点をEとすると, △DCA は二等辺三角形 であるから DELAC AD=1, AE=/12AC-15+1 (2) E D 2 4 AE √5+1 よって cos 36°= AD 4 B C 15° 45 RACTICE 110 右の図を利用して、次の値を求めよ。 sin 15°, cos 15°, 45° B tan 15° D sin 75°, cos 75°, tan 75° E 1

解決済み 回答数: 1
数学 高校生

どうやって直角三角形の比が求まるのかわかりません。角度はわかっていませんよねぇ。?

例題 14 力のつりあい 右図のように、重さ60Nのおもりを糸1と2を用いて天井か らつるした。 (1)糸1がおもりを引く張力の大きさ Ti 〔N〕 を求めよ。 (2)糸2がおもりを引く張力の大きさ T2 〔N〕 を求めよ。 糸 1 解答 (1)T1 = 48N (2) T2 = 36N 50cm 40cm 糸2 30cm おもり 60 N 力のつりあいの基本プロセス Process プロセス 0 直角三角形の 辺の比 Ti 35 -T2 AT2 35 T 60N 45 ・水平方向に力を分解する プロセス 2 鉛直方向と水平方向について, 力のつりあいの式をたてる プロセス 3 連立方程式を解き、 求めたい物理 を求める プロセス 1 物体にはたらく力をすべて図示し, 鉛直・ 解説 (1) プロセス (2) 物体にはたらく力をすべて図示し, 鉛直・水平方向に力を分解する プロセス 2 鉛直方向と水平方向について, 力のつりあいの式をたてる 別解 三角形の辺の比で解く。 3力のつりあいを図で示すと, 合力、 2つの張力の合力 T1 鉛直方向の力のつりあいの式より T2 T₁ T₁+ T₂ = 60 ...... 60 N 水平方向の力のつりあいの式より 60N T₂ 直角三角形の 5:4: プロセス 3 連立方程式を解き, 求めたい物理量 を求める ① ②を連立させて解くと, T=48〔N〕,T2=36〔N〕 圈 T = 48N T2=36N 直角三角形の辺の比5:43 さの比に等しい。 60:T1:T2=5:4:3 よってT = 48 〔N〕, T2=

解決済み 回答数: 1
数学 高校生

Pnが近づく点を求めたいのにXnの極限を求めているのがなぜだかわかりません。解説お願いします。

重要 例題 24 図形に関する漸化式と極限 R1 図のような1辺の長さαの正三角形ABCにおいて, 頂点 CA Aから辺BCに下ろした垂線の足を とする。 P, から辺 ABに下ろした垂線の足を Q1, Q1 から辺CAへの垂線の 足を R1, R1 から辺BCへの垂線の足をP2 とする。 このよ うな操作を繰り返すと, 辺BC上に点P1, P2, ......, Pn, h が定まる。このとき, Pn が近づいていく点を求めよ。 MOITLE B P1 P2 C 2章 基本 19. 数学 B 基本 36 3 CHART & SOLUTION 図形と極限 番目と (n+1) 番目の関係を調べて漸化式を作る ) BP=xm として, BP1 (すなわち X+1) を X で表す。 直角三角形の辺の比を利用して進 める。 3D 数列の極限 解答 である。 BP=xn とする。 すべての BQn=BP =1/2BP=1/2x ARn= AR,1/12AQ=1/2(4-1/2) CRn=CA-ARn=a- 1a -Xn 1 a -Xn, CPCR.-(+)-+ = = 2 2 = 4 8 3 BP+1=BC-CP+1-a-(+ 1/1 x n ) = 1 / a − 1/1 x n n+ -a 4 8 - x n X T F xn 0-2 A xn a 1 xnl + 2 4 xn] [2] [1xuiQm 2:0 B Xn JR P/P+1 a-(a) xn-ti 4 そのままでもOK. 1 13 2 2 ゆえに Xn+1= xn+ 変形すると Xn+1 =- 8 04 a Xn 3 よって、数列{ x /12/24}は初項 x 1/34, 2 -BR== a 3a a, a= 2 公比 E-1の等比数列であり Xn 8 3 n-1 ga 8 1/4+24 の解は α = 1/24 xn-a=(-1) ( x − a) xn- 3 = 2 n-1/ ゆえに xn= (12/12)(3)+3/31 よって - -a+ X1 n→∞ = ga したがって, Pnが近づいていく点は辺BC を2:1に内分する点である。 -a ma limx=2大 mil (S) 子点と

解決済み 回答数: 1
1/13