学年

教科

質問の種類

数学 高校生

(2)の問いについてです。 定点となるMを右の写真の解のような形で表してはいけないのでしょうか。ダメな理由も教えていただけるとありがたいです

Check 例題 360 直線のベクトル方程式(1)円3 07*** (1) 異なる2点A(a),B() に対して, p=(1-t)+t6 (1) 表される図形はどのような図形か. (2) 3点A(a),B(b),C(c) を頂点とする △ABC がある. 辺ACを 21 に内分する点M () を通り,辺ABに平行な直線のベクトル 方程式をa, 6, こと媒介変数を用いて表せ 考え方 (1) ja+(-a) と変形すると,点P(j) は点Aを通り, ABに平行な直線上にあ ることがわかる (2)M(m)を通り、ABに平行な直線のベクトル方程式は,p=m+tAB と表せる。 解答 (1) = (1-1)+16=a+1(-a) 点P()は,点Aを通り b=a+1(6-9) 1 変化する 定点 A1=0 6-d=ABに平行な直線, すなわち直線AB上を動き, b-a a t=0 のとき, = より, 点Aの位置 t=1 のとき, = より,点Bの位置 t=1 B tが0から1まで変 わるとき、点Pは点 にある。 よって、求める図形は, 線分AB である. AからABの向き (2) 求める直線上の任意の点をP() とする.点M(㎡) に, Bまで動く。 a+2c は,辺ACを2:1 に内分する点だから, m= 3 求める直線は辺AB と平行だから,その方向ベクト ルは, AB (S-C A(a) よって,=m+tAB=+2c+(-a) P(p) (M(m) 3 すなわち, = (1/31) a1+1+1/2/30 B(b) c(c) AB JS Focus 点A(a)を通り, d に平行な直線のベクトル方程式は, p=a+td 2点A(a),B(b) を通る直線のベクトル方程式は, b=(1-t)a+tb とくに, t のとき, 線分AB を表す 足して1

未解決 回答数: 0
数学 高校生

かっこ2のアで1-tとtを解答と逆にしてもいいと思いやってたのですが答えが合わないので計算途中をお願いしたいですよ

する(s, t |基本例題 34 直線のベクトル方程式, 媒介変数表示 00000 (1) 3点A(a),B(b),C(c) を頂点とする △ABC がある。 辺AB を2:3に内 分する点を通り,辺 ACに平行な直線のベクトル方程式を求めよ。 指針 2点(3,2) (2,-4) を通る直線の方程式を媒介変数を用いて表せ。 (イ)(ア)で求めた直線の方程式を, tを消去した形で表せ。 (1)点A(a)を通り,方向ベクトルの直線のベクトル方程式は p=a+td 40 67 1 p.65 基本事項 1 章 ここでは,Mを定点, AC を方向ベクトルとみて、この式にあてはめる (結果はa, もこおよび媒介変数を含む式となる)。 (2)2点A(a),B(b) を通る直線のベクトル方程式は b=(1-t)a+tb D=(x,y), a= (-3, 2) = (2,-4) とみて,これを成分で表す。 (1)直線上の任意の点をP(D) とし, tを媒介変数とする。 3a+26 A(a) ⑤ ベクトル方程式 解答 M (m) とすると m= P(p) 5 2 辺 ACに平行な直線の方向ベクトルはACであるから b=m+tAC=30+26+t(ca) M(m) 3 c-a t=0 B(b) C(c) 5 t=19 整理して b = (1/2/3 - ta1+1/26+1ctは媒介変数) 3a+26 +t(c-a) 5 でもよい。 LS) (2)2点(-322-4 を通る直線上の任意の点 の座標 (x,y) とすると (x,y)=(1-t)(-3, 2)+t(2,-4) =(-3(1-t)+2t, 2(1-t)-4t) =(5t-3, -6t+2) P(x, y), A(-3, 2), B(2,-4) とすると, OP= (1-t)OA+tOB と同じこと (Oは原点)。 各成分を比較。 x=5t-3 よって (tは媒介変数) ② とする。x=31 ① ×6+② ×5 から 6x+5y+8=0 tを消去。 ly=-6t+2 (イ) x=5t-3. ①,y=-6t+2 参考 数学IIの問題として, (2) を解くと, 2点 (-3, 2) (2, -4) を通る直線の方程式! -4-2 2+3 y-2= (x+3) から 6x+5y+8=0 練習 (1) △ABCにおいて, A(a),B(b),C(c)とする。 M を辺BC の中点とする 34 直線AMのベクトル方程式を求めよ。 博介変数で表された式, tを消去

回答募集中 回答数: 0
物理 高校生

なかなか解けないのでどなたかこの問題を解説して頂きたいです

L 14101 40 多 半角/全角 ! # あ $ う % え & お 漢字 1 ぬ 2131 3 あ 4 う 5 K Q W tab → 以下の問いでは、重力加速度の大きさをとして答えよ。 【問1】質量m の小物体が液体中を落下するときは、 重力 mg の他に、 液体 との間に抵抗力が働くと考えられる (浮力も考慮する必要があるが、 体積 が小さく浮力は無視できるものと仮定する)。 実験と測定を行い、ある質量1kgの物体の、時刻 t [s] における位置 y(t) [m] (液面からの深さ、y軸を液面を原点として、下向きを正にと る)は となることが分かった。 y(t)=2g(t+2e-lt-2) (i) 時刻 t における速度vy(t)、加速度 ay (t) をそれぞれ求めよ。 (6) y (ii) 横軸をt縦軸をyとしてvy (t) のグラフの概形を 0 ≤t ≤ 20 の範囲で描け。 (iii) lim vy(t) を求めよ。 また、この結果を物理的に解釈せよ。 t→∞ 抵抗力 重力 mg (iv) 運動方程式を利用して物体に作用する抵抗力の大きさ fを求め、 fvに比例することを示せ。 【問2】 水平面上を円運動する、 質量が3kg のおもちゃの車を考える。 円運動の中心を原点にとり、円運動して いる平面上に適当な2つの軸(z軸と軸)をとるとき、時刻における車の位置 = (s,y) が次式のように なっていたとする: (x(t),y(t)) =2(cos(+12), sin(+2)) (7) (r,y の単位は [m]、tの単位は[s] とする。) (i) 0 ≤t < 2 の範囲で、車の軌跡を描け。 (ii) 角速度 ω を求めよ。 (iii) 時刻 t における車の速度 J = (Vx, Vy) と、その大きさv=vvz + v7z [m/s] を求めよ。 (iv) 時刻 t における車の加速度 が d = (ax, ay) (8) (9) (a,(t), a,(t)) = (-sin (²), cos (+1)) - (cos (+12), sin (+²)) 212 (10 になることを、速度の微分を計算して確かめよ。 (v)加速度の大きさα = || を求めよ。 ※ペクトルの大きさと内積の関係、 (cos (12), sin (12)) = で、互いに直交する = 1 にあらわれるベクトル (-sin (2), cos (2)) が、それぞれ大きさ1 = =121=1.2=ことを用いると、計算が簡単にできる。

回答募集中 回答数: 0