学年

教科

質問の種類

数学 高校生

このプリントが学校の数1の予習で出ているのですが、(1)以外全く分からないため手の付けられない状態です。問題にバツが着いている所以外とプリントの真ん中に書いてある問題の解説をお願いします。

数学Ⅰ 第3章 2次関数 第1節 2次関数とグラフ 事前課題プリント3(教科書p.86 ~p.87) ※事前に教科書の該当ページをよく読み、自分なりの答えを考えて授業に挑みましょう。また、分からない場合は何が分からない 授業の最初にグループ内で、以上の2点を発表し説明できるように準備をして授業に参加してください。 (1) y=2x2 のグラフをx軸方向に1, y 軸方向に2だけ平行 移動した式を求めましょう。 (1)g=21x-132 (2) 関数 y=f(x) の座標を何点か考えると (0,f(0)), (1,f(1)),(2,f(2)),(3,f(3)), (4,f(4)) となる これらを,例えばx軸方向に 1, y 軸方向に2平行移動させると (1,f(0)+2), (2,(1)+2),(3,(2)+2),(4,f(3)+2), (5,(4)+2) となる これより,y=f(x) をx軸方向に1, y 軸方向に2平行移 動したグラフはv=f(x-△) と表すことができる。 ○と △に入る数字を求め、理由を説明しましょう。 y=21-1)22 (2)y=f(x)を {} 7174 y→ +P 9 と平行移動するとy-9=f(x-p)になる この公式を用いたやり方と、頂点に注目する やり方の2通りで平行移動後の玉の求め方 説明しょう。 (3)① y=x^2+4x1をそ 77+1 (2) を参考に,一般的な関数 y=f(x) をx軸方向に 軸方向に平行移動した式がどのような式になるか説明しま しょう。 y→+2 77-2 (4) y=x2-4x+5 を次のように移動した式がどのような式 になるのか求めましょう。 14 ① 頂点の座標を求め、 グラフの向き (aの値)に注意しましょう。 ② ★x軸に関して対称移動 ③ y軸に関して対称移動 ③原点に関して対称移動 (5) (5) y=f(x)に関して、次の各式は①x軸に関して対称移動 ②y軸に関して対移動 ③ 原点に関して対称移動した後の 式を表す。 どの式が ①~③のどれに当てはまるのか説明しま しょう。 -y=f(x) y= f(-x) -y=f(-x) (6)(5)を用いて,(4)の問題に答えましょう。

回答募集中 回答数: 0
数学 高校生

これってなんでこうなるのですか? 5/2-a/2≦5/2+a/2≦5/2+a/2が5≦5/2+a/2<6 解説読んでもよく理解できなくて…数直線もなんでこうなるのか? どなたかわかりやすく教えてください

[1] αを正の実数とする。 ア ア a 不等式 |2x-5 Sa… ① の解は ≤x≤ + 不等式①を満たす整数xが6個であるようなαの値の範囲は H 宮 a である。 sa<オである。 [2] 方程式-4x+4=|2x- 5/ ・・・ ② について考える。 練習問 α, b, c を定数とする。 放物線 (1) a, b, c の値を求めると, よって, 放物線Cの頂点A x≥ 5 2 の範囲で方程式 ② の解を求めると, x= カ である。中 y = 5 2 また, x< の範囲では方程式 ②の異なる解は全部でキ 個あり、その中で最も小さい解はで (3) x= である。 (2) 放物線Cをx軸方向に一 ケ x 放物線 C を平行移動した C2 の方程式は y=サシ] 答 解答 Key 実戦問題 5 絶対値記号を含む方程式・不等式 +05-2 C 数直線上で,不等式①の解を表 +6 x 5 +量 22 2 5 すと, x= について対称で 5 2 あるから、xsto の範囲に整数が3個あればよ い。 (1) 放物線 C:y 点(-1, -15) 点 (1,1) を通る 点 (45) ② ① より, ①③ に代入 これを解いて よって, 放物 y=- したがって, (2) 放物線 Ca 2x-5 ≧ 0 すなわち Key 2 5 x=1のとき 2 0 |2x-5|=2x-5 S し、さらに よって、 求め 線であるから (別解) 放 放物線の y さらに, +3 1252 22 Key 1 [1] 2x-5|≦a より -a≦2x-5≦a よって, 5-a≦2x≦5+α より 5 2 a 2 5 ·≤ x ≤ + 2 a2 不等式① を満たす整数xが6個であ 5 a るのは, 5 + <6 のときであ 2 2 るから 10 ≦5+α <12 したがって 5≦a <7 5 Key 2 [2] x≧ のとき, 方程式 ②は 2 整理して x2-4x+4= 2x-5 x2-6x+9=0 5 52 (x-3)2 = 0 より x=3 5 これは x≧ を満たす。 2 よって x=3 Key 2 5 また, x< のとき, 方程式 ②は 2 整理して よって x2-4x+4=(2x-5) x²-2x-1=0 x=1±√2 3 <<1/2より、 -1>-√2> であるから 3 2 5 2 - <1-√2 < 0, 2 <1+ √2 << お x=1のとき 線 C の (3) 放物線 2x50 すなわち Key 1 その座標に また,放特 程式は これが点 2p2-9p 2.x-5=-(2x-5) √2=1.41.. 32 くすぐりで評価すると,

未解決 回答数: 1
数学 高校生

なぜ75の答えはどちらでもいいのに76の答えは1つしかダメなんですか?

■0周年 IDE 130 海にま 指針 シン 昔の活 あと1 基本 例題 76 2次関数のグラフの平行移動 (2) 20 2次関数y=2x2+6x+7 y=2x2-4x+1 ①のグラフは,2次関数 000 ②のグラフをどのように平行移動したものか。基本事項 x 軸方向に 1, y 軸方向に -2 だけ平行移動すると,放物線 C:y=2x2+8x+9 に移されるような放物線Cの方程式を求めよ。 (1) 頂点の移動に注目して考えるとよい。 まず,①,② それぞれを基本形に直し、頂点の座標を調べる。 (2) 放物線Cは, 放物線 C を与えられた平行移動の逆向きに平行移動」 ある。 p.124 基本事項 3 ② を利用。 (1) ① を変形すると y=2(x+3)²+55/5 5 ①の頂点は点 (12/31) y=2(x-1)2-1 ②を変形すると ②の頂点は (1,-1) 3-2 vico 5-2 ② [9] 0 1 x ② のグラフをx軸方向に p, y 軸方向に q だけ平行移動 したとき, ① のグラフに重なるとすると 1点 グラ した。 ①:2x2+6+7 =2(x2+3x)+1 =2+2+3+ -2.1 ②:2x2-4x+1 ① 点 x軸 3軸 原点 ② 関 x 原 車 解説 ■ 対称移 平面上 =2(x²-2x)+すこと =2(x²-2x+1 特に, -2-12+1 ヤー ミチー 解答 チャート 原点を (a 15 1+p=123-1+g=/2/27 (*) 頂点の座標の ゆえに p=− q= 5 2 7(*) 見て, 2 3 55 (S- -1=- よって,①のグラフは,②のグラフをx軸方向に一 5 2 2'2 7 2 としてもよい。 放物 2 軸方向に だけ平行移動したもの。 したがって y=2x2+12x+21 JST y=2(x+3)+3_ (2)放物線Cは,放物線 C を x 軸方向に -1, y 軸方向に 2だけ平行移動したもので,その方程式は』(S) メー y-2=2(x+1)+8(x+1)+9_ 9 (8+x)s- 別解放物線 C の方程式を変形するとy=2(x+2)2+1 よって,放物線 C の頂点は点(-2, 1) であるから,放 物線Cの頂点は 点(-2-1, 1+2) すなわち 点(-3, 3) ゆえに、放物線Cの方程式は ly-y-2 換え。 頂点の移動に着 法。 X す 重 軸方向に1, 放物 (1- y軸方向に - 2 得 C 軸方向に と C 軸方向に2 Q [x→x-(-1) す

未解決 回答数: 0