学年

教科

質問の種類

数学 高校生

(3)についての質問です。 どうしてaをこのように場合分けするのか教えて頂きたいです!お願いします!🙏

実戦問題 90 対数関数の最大・最小 aを正の定数とする。関数f(x)= (logs4x) (logs/14) + alog.x (1≦x≦32) について I (1) t = log2x とおく。 f(x) をもの式で表すと, f(x)=ア+イウ++ また,t の値のとり得る範囲は オsts [カである。 (2) a=2のとき, f(x)はx=キのとき最大値 (3) x2 におけるf(x) の最大値をM とする。 0<a<ス のとき M = al + るとき,定数aの値を求めると α = 解答 Key 1 (1) f(x) Key 2 = = (loga 4x) (logs (4) + alogix* (log24+log2x) (log24-log2x)+α・ である。 4t (2+t)(2-t)+a.. = -t° +2at +4 log2 log2x log2 32 すなわち (2) g(t) = -t + 2at + 4 とおく。 a=2のとき 1/1 1≦x≦2のとき, 各辺の底を2とする対数をとると 0 ≤ t ≤5 g(t) = -t+4t+ 4 = -(t-2)² +8 よって, g(t) は t = 2 のとき 最大値8 t = 5 のとき 最小値-1 スのとき M = タチ α- ツテであるから,M=13 と ここで (01-7 t = 2 のとき, log2x=2より t = 5 のとき, log2x=5 より したがって, f(x)はx=4 のとき log2xd log24 a= 4 (1) 085 0= (01- x=4 x=32 最大値8 x = 32 のとき 最小値-1 x=[ケコのとき最小値サシをとる。 (3) g(t) = -t²+2at + 4 = −(t− a)² + a² +4 (i) 0<a<5のとき TAM 右のグラフより t=α のとき M = a² +4 また, M = 13 となるとき a² +4 = 13 h a² = 9 0 <a < 5 であるから a = 3 (EXB)(C (ii) a≧5のとき 右のグラフより t = 5 のとき M=10a-21 また, M = 13 となるとき 17 10a-2113 より 5 これはα≧5を満たさない。 (i),(ii) より, M = 13 となるとき,定数aの値は a=3 e -1 2 g(t) (Ba²+4) 4 8 4 29112 Ag(t) <10a-21 02 15 Oa5 となる。 g(t) 5a 真数は正であるから 4 4.x > 0, >0, x¹>0 であるが, 1≦x≦32 より、 これらの不等式はすべて成り 立つ。 | a>1 のとき M<N⇔loga M < loga N AST-48 (S) y=logax⇔ x = a 区間 0<t<5に頂点が含まれ るかどうかで場合分けする。 XUAL 57

回答募集中 回答数: 0
数学 高校生

この問題が(1)から分からないので詳しく教えてほしいです

ず。 <設問別学力要素> 大間 分野 内容 13 数列 大問 小間 →解答 Ⅱ型 6 解答 参照 解説 Ⅱ型 6 解説 参照 ④4 微分法 【III型 必須問題】 (配点 【配点】 (1) 28点. 2304 (2) 12点 40点 (1) (2) (3) 配点 8 とする. 以下において, lim- x-00 《設問別学力要素》 分野 内容 16 16 出題のねらい 群数列の規則性を理解し、 第k群の末頃まで の項数, 第k群に含まれる項の和を求めること ができるか, さらにそれらを利用して, 条件を満 たす項が第何項か、 および, 条件を満たす項の和 がどうなるかを求めることができるかを確認する 問題である. 4 微分法 f(x)=x2+ax-axlogx (aは正の定数) 10gx=0であるこ 知識 技能 O とは用いてよい. (1) f(x) が極値をとるxの個数が2であるよう なαの値の範囲を求めよ. (2) a=²のとき, f(x) の極小値を求めよ。 40点) 40年) 画 #033410 (1 配点 小問 配点 40点 (1) (2) 28 12 思考力 判断力 O 知識 技能 -S=(x)) 表現力 思考力 判断力 O O 表現力 出題のねらい 導関数を利用して関数の増減を分析することが GTD d できるかを確認する問題である. ◆ 解答 (1) f(x) の定義域は x>0 である.まず, 2 f(x)=x2+ax-axlogx, f'(x)=2x+a-a(logx+1) - 33 f"(x)=2-a x 40 であるから,f'(x) の増減は次の通り。 a (0) (∞) 2 0 f" (x) f'(x) さらに, x→+0 =2x-alogx, limf'(x)=8, x100 2x-a limf'(x) = limx2-α・ O x80 8 2015 =8 である. ここで、f(x) が極値をとるxの個数が2と なるのは,f'(x) がちょうど2回符号変化する ときであり,それは y=f'(x) のグラフが次の ようになるときである. + 2 よって, 求める条件は logx y=f'(x) () <0. に着目して万物 a-alog // <0. log>1. a> 2e. (2)a=²のときは α > 2e が成立するので, の場合に該当し, y=f'(x)のグラフは次の り。 ただし,x軸との共有点のx座標を B(a <B) とする。 (x) g(x) + (x)u(x) \ = '[(2)x(z)).

回答募集中 回答数: 0
数学 高校生

写真の問題で、なぜ「X+Y=2」「XY=P」 「Pのとりうる値の範囲は2つの実数解X.Yをもつ」 という、3つの条件からP≦1という範囲が求まるのですか?

28 第5章 指数関数と対数関数 77 指数・対数関数の最大・最小 (A) f(x)=2*+2-²-22x+1-2-2z+1 について,次の問いに答えよ。 t=2" +2 とおいて, f(x) をtで表せ. (2) tの最小値を求めよ. (3) f(x) の最大値とそのときのxの値を求め上 (B) x, y は正の値をとり, xy=100 をみたしている。このとき P=10g10.xlog10y について,次の問いに答えよ. Pをxを用いて表せ. (2) Pの最大値とそのときのx,yの値を求めよ. y=−2(t−1)²+33 (1) d) 右のグラフより, t≧2 において,t=2のとき すなわち x=0 のとき, 最大値 2 100 (B)(1)y= だから, I 10g10y=10g10- .. 10² I (2) 10g10.r=t とおくと, ポイント 2=2x+2x -=10g10102-10g10.x=2-10gi01 P=10g10.x (2-10g10x)…火だけの形 P=t(2-t)=-t2+2t=-(t-1)+1 右のグラフより, t=1, すなわち, x=10, y=10 のとき, 最大値 1 1-1-2 PA 1 0 129 指数・対数関数の最大・最小はひとまとめにおいて既 「知の関数へ (B) Pの最大値は次のようにしても求まります。 xy=100 より 10g10 y=2 ∴.log10+10g10y=2...... ① log10.x = X, 10g10y = Y とおくと, X,Yのとりうる値の範囲は実 数全体であり、①はX+Y=2, P=10girlogy は XY = P となる. したがって、Pのとりうる値の範囲は2つの実数解 X,Y をもつ条件より, P≦1 よって, 最大値は1 401-2F をαで表せ.

回答募集中 回答数: 0