学年

教科

質問の種類

数学 高校生

数1の解の存在範囲です。223のかっこ1が分かりません。なんで上に凸のグラフなのにD>0の時、-1<m<3ではなく、m<-1,3<mなんですか?もうすぐテストです。教えてください。🙏

Sta 解答 f(x)=x2-2mx+m+2 とする。 3 222 >k, f(k)>0 ② ③kはαとβの間 α, βがともにんより小⇔D> 0, 軸の位置 <k, f(k) >0 ⇔f(k) <0 (2 ① + - tak α軸 B + α軸 B kx D x が同時に成り立つときである。 20 [1] グラフとx軸が異なる2点で交わる。 [2] [3] 2次方程式f(x)=0の判別式をDとすると D=(-2m)2-4(m+2)=4(m²-m-2) D> 0 から m<-1,2<m (1) 軸x=mについて m>1 2 f(1) > 0 すなわち 12-2m・1+m+2>0 よって 3-m>0 したがって m<3 1, ②, ③ の共通範囲を求めて 2<m<3 答 y=f(x)のグラフは下に凸の放物線で,軸は直線x=mである。 この放物線とx軸のx>1 の部分が,異なる2点で交わるのは,次の [1], [2], [3] ...... .... 223 値の範囲を求めよ。 ..... (3 (③3) a Wy 3-m k O 1 * 221 2次関数y=x²-mx-m+3のグラフとx軸の正の部分が 異なる2点で交 わるとき,定数mの値の範囲を求めよ。 教p.121 応用例題 10 Bx m (1) x軸のx>-4の部分と異なる2点で交わる。 (②2) x軸のx>-2の部分とx<-2の部分のそれぞれと交わる 2次関数y=x2+2(m-1)x+3-mのグラフが次のようになるとき,定数 m の値の範囲を求めよ。 (1) x軸のx<1の部分と、 異なる2点で交わる。 (2) x軸の正の部分と負の部分のそれぞれと交わる。 * 223 2次関数 y=-x²-2mx-2m-3のグラフが次のようになるとき, 定数mの - ess

回答募集中 回答数: 0
数学 高校生

数1の解の存在範囲です。223のかっこ1が分かりません。なぜ上に凸のグラフなのにD>0は m<-1 3<mになるんですか?-1<m<3にならないのは何故ですか?もうすぐテストです。教えてください。

Sta 解答 f(x)=x2-2mx+m+2 とする。 3 222 >k, f(k)>0 ② ③kはαとβの間 α, βがともにんより小⇔D> 0, 軸の位置 <k, f(k) >0 ⇔f(k) <0 (2 ① + - tak α軸 B + α軸 B kx D x が同時に成り立つときである。 20 [1] グラフとx軸が異なる2点で交わる。 [2] [3] 2次方程式f(x)=0の判別式をDとすると D=(-2m)2-4(m+2)=4(m²-m-2) D> 0 から m<-1,2<m (1) 軸x=mについて m>1 2 f(1) > 0 すなわち 12-2m・1+m+2>0 よって 3-m>0 したがって m<3 1, ②, ③ の共通範囲を求めて 2<m<3 答 y=f(x)のグラフは下に凸の放物線で,軸は直線x=mである。 この放物線とx軸のx>1 の部分が,異なる2点で交わるのは,次の [1], [2], [3] ...... .... 223 値の範囲を求めよ。 ..... (3 (③3) a Wy 3-m k O 1 * 221 2次関数y=x²-mx-m+3のグラフとx軸の正の部分が 異なる2点で交 わるとき,定数mの値の範囲を求めよ。 教p.121 応用例題 10 Bx m (1) x軸のx>-4の部分と異なる2点で交わる。 (②2) x軸のx>-2の部分とx<-2の部分のそれぞれと交わる 2次関数y=x2+2(m-1)x+3-mのグラフが次のようになるとき,定数 m の値の範囲を求めよ。 (1) x軸のx<1の部分と、 異なる2点で交わる。 (2) x軸の正の部分と負の部分のそれぞれと交わる。 * 223 2次関数 y=-x²-2mx-2m-3のグラフが次のようになるとき, 定数mの - ess

回答募集中 回答数: 0
数学 高校生

なぜ(2)の一番最後に書いてある(したがって〜)ことが成り立つのかが分かりません。

基本例題 34 内積と直線のベクトル方程式, 2直線のなす角 (1) 線gの方程式を求めよ。する する (2) 2直線2x+y-6=0,x+3y-5=0 のなす鋭角を求めよ。 基本事項(1) p.432 KAO 指針 直線において, n = (a,b) はその法線ベクトル (直線に垂直なベク 2x-3y+6=0 に平行な直線をgとする。直 (3,4)を通り,直線ℓ: トル)である。・・・・・・・・・ (1) lの法線ベクトルはすぐにわかるから,これを利用すると lin, lng gi すなわち, nは直線gの法線ベクトルでもある。 (2) 2直線のなす鋭角→2直線の法線ベクトルのなす角を考える。 直線 2x+y-6=0 の法線ベクトル 直線x+3y-5=0の法線ベクトル HAND を利用して, n, m のなす角0 (0°≧0≦180°) を考える。 よって,直線g上の点を P(x,y) とすると An·AP=0 (1) 直線l:2x-3y+6=0 の法線ベクトルであるn=(2,-3) (1) yA は、直線gの法線ベクトルでもある。 AP=(x-3, y+4) であるから すなわち 2x-3y-18=0 (2) 2直線2x+y-6=0, x+3y-5=0 の法線ベクトルは,それぞれ =(2,1), m=(1,3) とおける。 TAP とのなす角を0 28 ||=√/12+32=√/10, n・m=2×1+1×3=5 ゆえに cosp=on.m 2(x-3)-3(y+4)=0 53 5 nm √5√10 よって ゆえに 0=45° したがって, 2直線のなす鋭角も 45° 0 (0°≧0≦180°) とすると調 0 \n\= √2²+1²= √5 (33)=3-(2,1)³ = (1) =(2,1SD =(1,3) 1 √2 HA00 XA03 m=(1,3) (数)と 0 A-HA Jet x Jet O 12 -30 31 -=|HA|-HA||| ‹‹ ãÊDA (S) n A ATSO HAS |HA|||± HAR HAN HA-HA- P JONAJ 直線の方程式における x, yの係数に注目。 L 5 cos = 5:$, () ve Ta|16|- 435 検討 red + 法線ベクトルのなす角が 鈍角のときは,2直線のなす 鋭角は180°-0となる。 1章 5 ベクトル方程式

回答募集中 回答数: 0