学年

教科

質問の種類

数学 高校生

この問題の問1においてX、Y両方に0を代入して微分したらa=a+a=2aになって a=0となると思うんですがなぜそうされてないのですか?

演習/例題154 関数方程式の条件から導関数を求める 関数 f(x) は微分可能で,f'(0)=a とする。 (1) 任意の実数x,yに対して, 等式f(x+y)=f(x)+f(y) が成り立つとき f(0),f'(x) を求めよ。 (2) 任意の実数x,yに対して、 等式f(x+y)=f(x)f(y), f(x) > 0 が成り立つと f(0) を求めよ。 また, f'(x) を a, f(x) で表せ。 演習 152 指針 このようなタイプの問題では, 等式に適当な数値や文字式を代入する ことがカギとなる。 f(0) を求めるには,x=0 やy=0 の代入を考えてみる。 また,f'(x) は 定義 f'(x)=limf(x+h)-f(x) h 入して得られる式を利用して, f(x+h) f(x) の部分を変形していく。 JJBR$15 ask f'(x)=lim 解答 (1) f(x+y)=f(x)+f(y) ① とする。 ① に x=0を代入すると f(y)=f(0)+f(y) ア よって f(0)=0 また, ① に y=h を代入すると f(x+h)=f(x)+f(h) ゆえに f(x+h)-f(x) h h→0 ...... h→0 ...... f(h) h =f'(0)=a =lim h→0 ƒ(0+h)-f(0) =lim TAMS HOh-oh E h HAPO f(x+₁)=f(x) f(v₂) ③とする (*) に従って求める。 等式に y=hを代 x=x=0を代入してもよい。 ア の両辺からf(y) を引く。 <f(x+h)=f(x)+f(h) から f(x+h)-f(x)=f(h) ƒ(+h)-f( h lim h→0 26 | (*) f(0)=0 -=f'(■)

回答募集中 回答数: 0
政治・経済 高校生

答え教えてください

WORK 国連の主要機関 ● その他の国連機関 ○ 専門機関 ◆ 関連機関 1. 次の図で説明される安全保障の考え方を答えなさい。 [① [② 同盟 主要委員会 ● 人権理事会 ● 他の会期委員会 ● 常設委員会およびアドホック機関 - その他の補助機関 ● 国連貿易開発会議 UNCTAD - 国連開発計画UNDP 国連難民高等弁務官事務所UNHCR 世界食糧計画WFP ● 国連パレスチナ難民救済事業機関UNRWA - 国連環境計画UNEP- 国連児童基金UNICEF 国連人口基金UNFPA 国連訓練調査研究所UNITAR 国連大学 UNU ジェンダー平等と女性のエンパワーメント● のための国連機関UN-Womenなど 成立過程 (① A 国際連盟規約 BE CE 信託統治 理事会 制裁措置 (④ B 機能委員会 地域委員会 対立 2.教科書p.55 「国連機構図」 を参考にして、次の国連機構図のA~Dに適する語句を、 解答欄に 記入しなさい。 ●その 他の機関 表決方法 総会 理事会ともに (③ A 同盟 加盟国 原加盟国42か国。 提唱した(② 主要機関 総会, 理事会, 事務局など D国 E (F国 事務局 攻撃 B国 軍事参謀委員会 常設委員会およびアドホック機関 平和維持活動および使節団など ● 国連平和構築委員会 ◆CTBTO包括的核実験禁止条約 機関準 ) は不参加。 主要国の日、独、伊が相次いで脱 退 CE OPCW化学兵器禁止機関 ◆ IAEA国際原子力機関 一○ ILO国際労働機関 世界銀行グループ 世 IBRD国際復興開発銀行 一O FAO国連食糧農業機関 -O UNESCO 国連教育科学文化機関 一O WHO 世界保健機関 IDA国際開発協会 ・IFC国際金融公社 INCREA 一O IMF国際通貨基金 〇ICAO国際民間航空機関 -O IMO 国際海事機関 ITLLES 一○ MORE ITU国際電気通信連合 S UPU万国郵便連合 ○ WMO世界気象機関 一○ WIPO世界知的所有権機関 一〇 IFAD国際農業開発基金 -O UNIDO 国連工業開発機関など ◆WTO 世界貿易機関 ) 制 AD ( ⑥ 制裁 D国 3. 教科書p.54 「国際連盟と国際連合」 を参考にして,次の表の①〜 ①1 を埋めなさい。 国際連盟 国際連合 米大統領が14か条で提唱。 1941年の大西洋憲章をもとに, (⑤ 作成。 E ] FIS A B )をもつ ⑧ 信託統治理事会など C 米・英・仏・中・露の5か国が 原加盟国51か国。 D として参加。 ) 理事会, 経済社会理事会, 制, 重要事項は3分の2。 安保理 ) を含む15分の9 では (⑩) 経済的制裁のほかに安保理の (① ・・・・ 国連軍の派遣あり に記入しなさい。 ) 正誤問題 次の文が正しい場合は○、誤っている場合には×を けっかん 1. 国際連盟の欠陥の1つは, 表決について多数決制をとったことにある。 2. 国連安保理の5 常任理事国とは, アメリカ, イギリス, フランス, ドイツ, 中国の5か国である。 3. 平和維持活動(PKO) は, 国連憲章が想定していた安全保障の方式ではない。 ( ) ( ) 3 国際連合と国際協力 47

回答募集中 回答数: 0
数学 高校生

青の線の部分で何故絶対値がつくのかが分かりません良ければ教えてください

266 例題154 連続と微分可能性 次の関数はx=0で連続であるか。 また, x=0で微分可能であるか。 1 x2 sin 11/12 1 RE (x=0) x (x=0) [xsin x (x=0) 0 (x=0) (1) f(x)= 指針連続,微分可能の定義に従って考える。 f(x) がx=α で連続 ⇔ 答案 (1) x→0 ある。 x=αで微分可能 lim h0 微分可能なら連続であるから、まず微分可能性から調べる。 f(0+h)-f(0) f(h) 1 = sin h h h ん→0のとき、この極限は存在しないから, f(x) は x=0 で微分可能でない。 x=0のとき,0≦xsin limf(x)=limxsin =0 x→0 (2) g(x)= limf(x)=f(a) GA-M =lim x→0 x→a 11/12/≦lxl, limlxl=0であるから x→0 Ania 1 x→0 x limf(x)=0=f(0) が成り立つから, f(x)はx=0 で連続で f(x)=1x (1/2-xsin 0 f(a+h)-f(a) h xsin 1 ...... 21 習 154 関数f(x)=√|x| は, x=0で連続であるが A x=0 における微分係数は存在しないことを 示せ。 154 関数f(x) を B g(x)-g(0) g(x) 1 (2) g'(0)=lim =limxsin x→0 x x-0 x ① により,g'(0) = 0 が成り立つから,g(x)はx=0 で微分 可能である。 したがって,g(x)はx=0 で連続である。 が存在 証 ***** h→0のとき sin は振動する。 h はさみうちの原理。 (p.235 参照 ) 注意 (1) のように、連 続であっても、 微分可 能とは限らない。 RUSOCIO 100 y=√x

未解決 回答数: 1
数学 高校生

解答の8行目なのですが、fxはなぜx=0で微分可能であると分かるのですか?

356 00000 微分可能な関数f(x) f'(x)=ex-1 を満たし, f(1) = e であるとき、f(x)を 求めよ。 X 重要 例題 211 導関数から関数決定 (2) 指針 ▷>条件f'(x)=lex-1|から, f(x)=flex-1|dx とすることはできな い。 まず、 絶対値 場合に分けるから x>0のとき f'(x)=ex-1 x<0のとき f'(x)=-(ex-1)=-ex+1 x>0のときは、 x<0のときは,条件f(1) =e が利用できない。 練習 解答 x>0のとき, ex-1>0であるから よって f (1) =e であるから ゆえに C=1 よって したがって ④ 4 2111 limf(x)=limf(x)=f(0) を利用して, f(x) を求める。 0 (e=e-1+C_ したがって f(x)=ex-x+1 x<0のとき, ex-1 <0であるから f'(x)=-ex+1 よってf(x)=f(-ex+1)dx = e から f(x) が決まる。 しかし, と条件f(1) そこで, 関数f(x)はx=0 で微分可能=x=0 で連続 (p.242 基本事項1②に着目。 320 tation ( =-ex+x+D (D は積分定数) (2) f(x)はx=0で微分可能であるから, x=0で連続である。 ゆえに ①から ②から f'(x)=ex-1 f(x)=f(ex-1)dx=ex-x+C (Cは積分定数) limf(x)=limf(x)=f(0) x-0 x→+0 π 2 limf(x)=lim(ex-x+1)=2 x→+0 x→+0 lim f(x)=lim(-ex+x+D)=-1+D x-0 ゆえに ex-1 このとき, lim -=1から x→0 x lim h→+0 2=-1+D=f(0) lim h-0 x-0 f(x)=-ex+x+3 ...... ƒ(h)-f(0) eh-h-1 h h f(h) -f (0) h =lim ん→+0 A =lim h-0 -=0, -e+h+1 h =0 よって,f'(0) が存在し, f(x)はx=0で微分可能である e*-x+1 (x≥0) 以上から f(x)= D=3 yA 基本210 0 an y=ex-1 導関数 f'(x) はその定義か らxを含む開区間で扱う。 したがって, x>0,x<0の 区間で場合分けして考える。 f(x) は微分可能な関数。 ◄lim 必要条件。 逆の確認。 p.257 も参照。 im (e^/-1-1) ん→+0 lim{=(e^-¹) +1} ん→-01 h OTS 1 π <x<1とする。 f'(x)=|tan²x-1, f(0)=0 であるとき, f(x) を求めよ。

回答募集中 回答数: 0
数学 高校生

例題の⑵では-3をかけているのに、練習の⑵では-1をかけていないのはなぜですか?

(2) lim h→0 をf'(a) を用いて表せ。 指針▷ (1)x→1のとき,分母x-1→0であるから、 極限値が存 在するためには,分子x2+ax+b→0でなければならな い (数学ⅢIの内容)。一般に (2) x1 ゆえに よって x→1 f(a-3h)-f(a) h このとき lim h→0 解答 (1) lim(x-1)=0 であるから 練習 190 lim x-c (2) 微分係数の定義の式f'(a)=lim ho f(x) g(x) まず, 分子 → 0から, aとbの関係式を導く。 次に,極限値を計算して, それが=3となる条件から, a, b の値を求める。 =α かつlimg(x)=0 なら limf(x)=0 x-c 1+a+b=0 b=-α-1 lim x→1 =lim x-1 =a+2 x2+ax+b x-1 (与式)=lim- t0 (2) lim h→0 =-3f'(a) ☆ (1) 等式 lim a +2=3から a=1 ①から b=-2 0のとき, -3h→0であるから ƒ(a−3h)—ƒ(a) . f{a+(-3h)}-f(a) h -3h lim(x2+ax+b)=0 x→1 =lim h→0 1 =lim (x−1)(x+a+1) =lim(x+a+1) x-1 EL 別解 -3h=t とおくと, h→0のとき t→0であるから f(a+t)-f(a) • (-3) t 3 x2+ax-a-1 x-1 =f'(a)(-3) =-3f'(a) x→1 =lim t0 ax2+bx+3 5 x3x2-2x-3 4 = f(a+2h)-f(a-h) h f(a+h) -f (a) が使えるように,式を変形する。 h p.296 基本事項 基本 188 k f(a+t)-f(a) t (0) ならば lim 存在せず 必要条件 必要条件。 注意 必要条件である b=-a-1 を代入して (極限値 ) = 3が成 り立つような α, 6の値を求 めているから a=1,b=-2 は必要十分条件である。 lim h→0 f(a+)-f(a) = f'(a) □は同じ式で ん→0のとき口→ 0 □の部分を同じものにする ために, のような変形を している。 h→0のとき 3h0 だからといって, (与式)=f'(a) としては誤 り! を満たす定数a,bの値を求めよ。 をf'(a) を用いて表せ。 Op.307 EX123」 ( ②

回答募集中 回答数: 0