学年

教科

質問の種類

物理 高校生

電界、電位、コンデンサーの質問です。 この問題がわかりません。 教えてください。

電界・電位・コンデンサー 16. 図のように,大きさが等しく符号が反対の電 荷+α, -g をそれぞれ点A(0, 4),B(0, -d) に置いた。 静電気力に関するクーロンの法則の 比例定数をkとする。 (1) 原点0での電界 (電場)の強さはいくらか。 (2) x軸上では,電界は成分のみとなる。 点C(2d, 0) における電界の強さは, 原点 0 における強さの何倍か。 17. 図のように, 真空中で原点に電荷Q の粒子 A が 固定されている。 位置 (4a, 3a) に電荷gの粒子 B をもってきたとき, 粒子Bが粒子Aのつくる電界 (電場) から受ける静電気力の大きさはアである。 また, 粒子 B を位置 (4α, 0) まで移動させたとき, 粒子 B にはたらく静電気力のなした仕事はイ である。 ここで,ko は真空中でのクーロンの法則 の比例定数である。 (3) (6) or Ⓒod (8) OS (2) 点における電界の大きさはいくらか。 oa y↑ +qA (0, d) 2 N/C -q B(0, -d) 0 a 3. 電磁気に関する文章を読み、下の問いの答えを,それぞれの解答群のうちから1つ ずつ選べ。 真空中で, 図のような縦0.6m, 横 0.8mの長方形 abcd の各頂点に電荷を置く。 a 点, c点の電荷はそれ ぞれ+4.0×10-°C で, b点の電荷は-3.0×10-°C, d点の電荷は5.0×10-°Cである。 長方形の各辺の 中点をそれぞれ p,q, r, s とし, 中心点を0とする。 クーロンの法則の比例定数は 9.0×10°N・m²/C2 とす る。 (1) 点における電界 (電場) はどの方向を向いているか。 ob ② op 5 oc 4 oq p Al C(2d, 0) x (4a, 3a) (4a, 0) x 0 S q r C

回答募集中 回答数: 0
物理 高校生

⑶の解説に[半波長ののm倍が円周の長さ0.25πに等しい]と書いてあるのですがなぜそうなるか教えてください

応力を磨く 解答編p.8 156 実験結果の解説を理解して考察するアウタイ ( 励振器 (バイブレーター) にループピアノ線 (直径25cm) を取りつけて振動させると ループピアノ線に沿って時計回りと反時計回りの振動が伝わり, 励振器の振動数を調整 すると円周上に定在波が生じる (図1)。 この定在波の発生について,以下の問いに答え よ。 0 第Ⅲ部 波 図1 ループピアノ線に生じた定在波 ( 腹の数が6個の定在波) [U ...... 0900 00000 ·m m 0 0 V V f(Hz) 150 100 (1) ループピアノ線に腹の数が6個の定在波が生じているとき, 励振器の振動数は 90 Hz であった。 ピアノ線を伝わる波の速さを求め, 円周率πを用いて答えよ。 (2) 直線に張った弦をはじくと張力によって振動するが,ループピアノ線は曲げによる 変形に対する応力によって振動する。 このため, ループピアノ線の振動は腹の数と振 動数が比例関係を示さず, 振動数fは腹の数の2乗にほぼ比例することが知られ ている (図2)。腹の数が2個 8個のときの振動数をそれぞれ推定せよ。 (3) 励振器の振動がループピアノ線を伝わるときの波の速さ”と腹の数の関係とし て,最も適切なグラフを下記の①~⑥から選び番号で答えよ。 1 50 0 (5) 腹の数mと振動数の関係 0 2 8 腹の数m[個] 図2 ループピアノ線の定在波の腹の数と 振動数fの関係 m 4 +m 6 0円 V m 221 HA

回答募集中 回答数: 0
物理 高校生

この問題の答えと解き方を教えていただきたいです

質量Mの太陽のまわりを回っている質量mの小惑星がある。 図のように,この 小惑星および地球の公転軌道は円とみなすことができ, その公転半径はRP, RE である。 ケプラーの3法則および万有引力の法則を用いてつぎの問いに答えよ。 ただし、太陽の万有引力のみを考慮し、他の惑星の影響は無視してよい。 万有 引力定数をGとする。 ケプラーの3法則はつぎのとおりである。 第1法則: 惑星は太陽を焦点とする楕円軌道を描く。 第2法則: 惑星と太陽とを結ぶ線分が単位時間に掃引する面積(面積速度) は惑星の軌道上あらゆる点で一定である。 第3法則: 惑星が太陽のまわりを回る周期の2乗は, 楕円軌道の長半径の3 乗に比例する。 その比例定数は惑星によらず 一定である。 (a) 小惑星の速さ VoをG, M, Rp で表せ。 〔A〕 図のように質量m', 速さVの小物体が 小惑星の軌道の接線方向から飛んで来 て、点Pで小惑星に正面衝突して一体 となった。 小惑星の公転の向きは変わら なかったが, 小惑星の公転軌道は楕円となった。 近日点における太陽との 間の距離は地球公転軌道半径RE に等しく, 遠日点における太陽との間の 距離はもとの公転軌道半径RPに等しかった。 つぎの問いに答えよ。 (b) 衝突直後の小惑星の速さ, um, m', Vo, V を用いて表せ。 (c) 衝突後,太陽からの距離にあり、速さVで楕円運動している小惑星の力 学的エネルギーEをm, m',r, V, G, M を用いて表せ。 ただし, 位置エネルギー は無限遠方をゼロとする。 m'V' 小物体 Rr P(遠日点) 地球 RE 太陽 近日点 Vo m 小惑星 (d) 小惑星の近日点における速さと遠点における速さとの比um/mを求めよ。 (e) uG, M, RE, Rp を用いて表せ。 〔B〕 RP が RE の3倍であるとき, つぎの問いに答えよ。 ただし、1年は3.14×10秒 地球の公転軌道半径は1.50×10km とし, 有効数字2桁で答えを求めよ。 (f) 遠点における小惑星の速さは,衝突前の小惑星の公転速度Vの何倍 であるか。 また, は秒速何km か (g) 衝突後,小惑星が最初に近日点にやってくるのは何年後か。 〔東京工大〕

未解決 回答数: 1