学年

教科

質問の種類

数学 高校生

ハヒフヘを教えていただきたいです。 よろしくお願いします。

[2] 以下の問題を解答するにあたっては、 必要に応じて 42, 43ページの常用対数 表を用いてもよい。 この表には, 1.00 から 9.99 までの常用対数の値が, 小数第 5位を四捨五入して小数第4位まで示されている。 (1) N = 66420 として, Nのおよその値と桁数を求めよう。 N=(6.64×102) 20 であるから, Nの常用対数を計算すると _log10N=10g10 (6.64×10²) 20 20/ log10 6.64 + (0y13 (0²) である。 数 6.5 6.6 6.7 6.8 6.9 20 1 ツテ 10g10 6.64 + 20 2 .8129 .8136 .8142 3 (4 81058202,8209825 .8267 .8274 .8261 .8331 .8325 .8338 8388 ,8395 .8401 ヌ+10g10 .8149 .8156 837 .8280 .8287 .8351 .8344 .8414 .8407 トナ 40 5 40 ノ であるから, 10g 10 N のおよその値は 56 2,78 s 6 .8162 .8169 .8235 .8228 .8293 .8299 .8370 _8363 .8357 .8420 .8426 .8432 となる。 したがって,Nはおよそ (0)=2208-F 2.78 [×10 ニヌ] である。 また,Nはハヒ桁の自然数である。 201g106.64 +40 8 さらに, 上図のように常用対数表を用いると, 10g 10 6.64 の値はおよそ 56 ことが 0.8222 であることがわかるので, 10g 10 N の整数部分はニヌであり, 小数 部分はおよそ ネである。ただし, 実数x に対し、 不等式 n≦x<n+1 を満たす整数n を 「xの整数部分」 といい, x-n を 「xの小数部分」とい となる実数αの値はおよそ 20,444 う。 再び常用対数表より, 10g104= 478⑤5 ネ 9 .8176 .8182 .8189 8241 .8248 .8254 .8312 .8306 .8319 8376 .8382 ,8439 .8445 20×0.8322 +40 16.44% +40 = 56.444 (数学ⅡⅠ・数学B 第1問は次ページに続く。) ツテハヒに当てはまる数を求めよ。 ただし, ネ につ いては, 当てはまる最も適当なものを、次の⑩〜⑦のうちから一つずつ選べ。 ⑩ 0.222 ④ 1.66 ① 0.444 ⑤ 2.78 ET 10日とたい ② 0.6444 ⑥ 4.41 ある会社では、銀行から3500万円を借りた(これを「釜」という)。この 元金には1年ごとに複利で3%の利子が加算されるとする (例えば、2年後には 元金と利子の合計が、 元金の1.032 倍となる)。 このとき, 10年後 ( 10 回利子 が加算された直後) の元金と利子の合計を有効数字2桁で求めよ。 およそ TO APD に選ん将来 The conce**** Konuşe 第2回 ③ 0.8222 ⑦ 6.64 x10円 (数学ⅡⅠI・数学B 第1問は次ページに続く。) -41-

回答募集中 回答数: 0
数学 高校生

空欄の所が全て分かりません 1問だけでもいいのでわかる方がいましたら解答お願いします

とする。 2 Ban 値を求めよ。 (iⅰ) oka4のとき f(x)=2x+8x-7 ~= f(a) = -7₁ 4a²-5ab-617 ⑤ 次の 解答欄には答えのみを記入せよ。 を正しくうめよ。ただし、 16コ(+8x-4x-15X-20+10 (1)(2x-5)(3x+4x-2)を展開して整理したとき、xの係数は ア である。 (2) 4月²5ab-66²を因数分解すると、イである。 6×3-7X2-24x+10 = T (√2-2)(√2-√5)/(√2+√5)(√2+2)を計算し簡単にすると、ウである。 3x-2=:4 (4)方程式 (3x−21=4の解はx= エ である。 3x = 4-2 3x3-4-2 36 3X=2. 3X=-6 J (4x+3> 2(x-2)+1 x=-2 (5)連立方程式x+2 x+3. の解はオである。 (2021年1年7月1 ) -3 412 ア -7 イ (x-2)(4)(+3) ウ 6 次の を正しくうただし、 解答欄には答えのみを記入せよ。 (1)(2x-1)(6x+2)(3x+1)(4x-3)を展開し、 整理すると、アとなる。 12 x 14X-6X-1 122³-2X-2-12X* +5X-3 = 3X-5 (2) 2x²x6を因数分解するとイとなる。 2 (A+√) (A-√5) = A ²-3 (3) (1+√3+√5)(1-√3+√5) を計算し、簡単にすると ウ となる。 = (1+√5)²³-3 407 =1+255+5-3 を整数とするとき、n≦2+√7<n+1を満たすnは王である。 - 3+2√5 (5)x=√5のとき、 |x-2|+|x-3)を計算し、簡単にするとオとなる。(2020年1年7月1 ) ア 3x-5 イ (2x-3)((+2) ウ 3+2√5 7 次の を正しくうめよ。 ただし、 解答欄には答えのみを記入せよ。 4x².1 (1)(3-4x)^2-(2x+1)(2x-1)を展開し、 整理すると、アとなる。 31-9-5x+5-7 9-24x +16x² - 4x²1 3x-5x<9-2 (2) 6x²xy-2y²を因数分解するとイとなる。 X-37-43-²-3-2x < 7₂ x7-1 (3)(√3+ 2)(²-) を計算し、簡単にするとウとなる。 6 lovo [3(x-3)<5(x+1)-7 x-3>4 x=1 (4) 連立不等式x-2 8. の解はエである。 3X-6>XC-12 fo fb 6 f 3X-X > -12+6 2x>-6 (5) 不等式 |x-31>4の解は、オである。 (2019年1年7月1) SC-3 → 12X-24(+10+ (2x-1)(3x+1)-2√3+√2 ア ⑧ 次の 8 を正しくうめよ。 ただし、 解答欄には答えのみを記入せよ。 (1)(2x+1)(5x-2)-(x+2)(x-2)を展開し、 整理すると、アとなる (2) 4x²-x-3 を因数分解するとイとなる。 4.5 5.3 (3) (2-√2)^2+ を計算し、簡単にするとウとなる。 12 √8 7x-253x-4 (4) 連立不等式2x4x-1 の解はエである。 3 2 (5) 方程式 2-3x|=5の解は、x=オである。(2018年1年7月1) ア 1 (4x+3)(x-1) ウ -241 52-77 頂点(21) =-277-2)²-4 thir = 2-3 12/3. xX-3 x=-1 1/21 148 65 2-300=5 -3X=5-2 -3x=3 3x+68X+12-36 74 3X16 > 8X-24 3X-8x>-24-6 -5X > -30 -2 オ 247<n+1 1+√9 <h X>-3₁- 3 2 x 4-6 -11 x<6 5.9 5-4 155-21+115-31 = √5-2-5+3 1 ☆ 26 (13+2√2)(2-√6) = 2√3-√18 + 4√2-2√12 =2√3-352+45-453 = -2√3+√2 7 x = 2 12 ×12 24 12 744 +18 152 オ 5 21152 2 76 238 19

回答募集中 回答数: 0