学年

教科

質問の種類

数学 高校生

この青で囲んだ部分のやつまじでどこから来たのかわかりません。どなたか教えてください

を 223 方 ワイ 増場 [2] a<1≤a+1 001のとき よって はx=1で最大となり M(a)=f(1)=4 次に2<α<3のとき, f(x)=f(a+1)とすると a³6a²+9a-a³ すなわ 2<a<3と5<√33/6に注意して 1.3.0.4+1 4+2² 1713! [3] 1≦a < のとき f(x)はx=αで最大となり 3a²-9a+4=0 _ −(−9) ± √ (−9)²—4•3•4 2.3 a= 9+√33 6 M(a)=f(a)=a³-6a²+9a 近いもの lid 以上から まちがた 9+√33 [4] ≦αのとき 6 f(x)はx=a+1 で最大となり M(a)=f(a+1)=α-3a²+4 u+1使える! [2]y 4 Q= [3]y [4] y 9+√33 a<0, 6 0≦a <1のとき M (α)=4 4F a+α+1)=3から 2 最大 9+√33 1≦a < 6 [3],[4] a≧3≦atlになる 9 土 O 1 3 a+1 9+√33 6 3次関数のグラフの対称性に関する注意 p.344 の参考事項で述べたように, 3次関数のグ ラフは点対称な図形であるが, 線対称な図形で はない。 すなわち, 3次関数がx=pで極値をと るとき 3次関数のグラフは直線x=pに関して 対称ではないことに注意しよう。 上の解答のαの値を 133 6 最大1 2 3 '3 a a+1 a+1 I x ●最大 La+1 a+1 x のとき M (a)=a²-6a²+9a 指針の② [区間内に極大 となるxの値を含み, そ のxの値で最大] の場合 。 ≦a のとき M (a)=a²-3a²+4 指針の⑧ [区間で単調減 少で, 左端で最大] また は ⑩ [区間内に極小とな るxの値がある] のうち 区間の左端で最大の場合。 9+√33 ex= 指針の① [区間内に極小 となるxの値がある] の うち、 区間の右端で最大 の場合、 または指針のA [区間で単調増加で,右 [端で最大] の場合。 3次関数の グラフ f(+1) 設定しろ! 対称ではない 放物線 PICZ (線) 対称 i=212としてはダメ! ] なお、 放物線は軸に関して対称である。 このことと混同しないようにしておこう。 357 dfl 最小値m(t) を求め 6章 3 最大値・最小値、方程式・不等式 ぐの E 委

回答募集中 回答数: 0
数学 高校生

場合分けの問題で、なぜ片方だけ=が あるのですか?わかる方お願いします🤲

00000 重要 例 224 区間に文字を含む3次関数の最大・最小 f(x)=x-6x+9x とする。 区間 a≦x≦a+1におけるf(x)の最大値を 求めよ。 「指針 この例題は、区間の幅が1 (一定)で,区間が動くタイプである。 まず, y=f(x)のグラフをかく。次に,区間 a≦x≦a+1をx軸上で左側から移動し ながら, f(x) の最大値を考える。 場合分けをするときは,次のことに注意する。 A 区間で単調増加なら、 区間の右端で最大。 ® 区間で単調減少なら、 区間の左端で最大。 両極値をとるxの値がともに区間に含まれることはないから © 区間内に極大となるxの値があるとき, 極大となるxで最大。 ① 区間内に極小となるxの値があるとき, 区間の両端のうちf(x)の値が大きい方 で最大→区間の両端で値が等しくなる場合が境目となる。すなわち、 により場合分け。 f(a)/(a+1)となると① Max ① B A 最大 f'(x)=3x2-12x+9 =(x-1)(x-3) f'(x)=0 とすると k=1, 3 f(x) の増減表は次のようになる。 1 3 2- [拡大] 小 4. 0 f'(x) + f(x) > + 01 [1] [a+1 <1 すなわち α<0の [1] y とぎ 4F f(x)はx=g+1で最大となり M(a) =f(a+1) =(a+1)³-6(a+1)² +9(a+1) =a²³-3a²+4 よって, y=f(x)のグラフは右上の図のようになる。 ゆえに、f(x)のa≦x≦a+1 における最大値 M (α) は, 次 のようになる。 a M y=f(x) | 3 -最大 a+1 最大 3 または | 解答の場合分けの位置のイ メージ YA y=f(x) | 121131 a 01 Ca+1 a 3 a+11 <指針のA [区間で単調増 加で,右端で最大] の場 合。 [21] すなわち 0≦a <1のとき f(x)はx=1で最大となり M(a)=f(1)=4 次に, 2 <<3のとき, (a)=f(a+1) とすると a³-6a²+9a=a³-3a²+4 3a²-9a+4=0 ゆえに よって 検討 2-3 2<u <3と5<√33 <6に注意して 9+√33 のとき [3] 1≦a<- 6 f(x)はx=αで最大となり Q= M(a)=f(a)=a³-6a²+9a [4] 9+√33 αのとき 6 f(x)はx=a+1 で最大となり 以上から [2]y M(a)=f(a+1)=a³-3a²+4 -(-9) ± √(-9)²-4·3·4_9±√33 224 よ。 al 最大 [3]y+ 6 9+√33 6 [4]ya 最大 0 1. @ 3 a 05 1 9+√33 6 a<0, 0≦a <1のとき M (α) = 4 .9+√33 [1]≦a[k] [] 6 3 3次関数のグラフの対称性に関する注意 p.344 の参考事項で述べたように, 3次関数のグ ラフは点対称な図形であるが, 線対称な図形で はない。 すなわち, 3次関数がx=pで極値をと るとき, 3次関数のグラフは直線x=に関して 対称ではないことに注意しよう。 「上の解答のαの値を a+(a+1) 2 =3から a+1 a a+1 指針C [区間内に極大 となるxの値を含み、そ のxの値で最大] の場合、 最大 aa+1 a+1 ―≦a のとき M (a)=α²-3a²+4 指針の区間で単調減 で、左端で最大] また ① [区間内に極小とな るxの値がある] のうち 区間の左端で最大の場合。 のとき M(α)=α²-6a²+9a <指針の① [区間内に極小 となるxの値がある ] [の うち、区間の右端で最大 の場合。 または指針の [区間で単調増加で、 右 で最大] の場合。 357 3次関数の グラフ 「対称ではない 放物線 (線)対称 6 a=1 としてはダメ! ] 2 なお, 放物線は軸に関して対称である。 このことと混同しないようにしておこう。 f(x)=x-3x²-9x とする。 区間 t≦x≦t+2におけるf(x)の最小値m(t) を求め 2 最大値・最小値方程式・不等式

回答募集中 回答数: 0
数学 高校生

225. [2]で、f(x)は常に単調増加する、というのは 「x≧においてf(x)は常に単調増加する」ということですよね? y=x^3は極値は持たないけど単調増加でも単調減少でもないですよね??

t)(x-t) その 鹿児島大 演習 223 道 219 参照。 すると き, t = 0, [u [の] ~極大,他方で引 のとき ると 3 演習 例題225 不等式が常に成り立つ条件(微分利用) 0000 aは定数とする。 x≧0 において,常に不等式 x-3ax²+4a>0が成り立つよう にaの値の範囲を定めよ。 のとき 指針f(x)=x-3ax2+4aとして, 検討参照。 [1] 2a < 0 すなわちα<0のとき (神号同側) [x≧0 における f(x) の最小値] > 0 となる条件を求める。 導関数を求め,f'(x)=0 とすると x=0, 2a 02a の大小関係によって, f(x) の増減は異なる から 場合分けをして考える。 解答 f(x)=x-3ax2+4a とすると f'(x)=3x²-6ax=3x(x-2a) ......... f(x)=0 とすると x=0, 2a 求める条件は,次のことを満たすαの値の範囲である。 「x≧0 におけるf(x) の最小値が正である」 ・・・ (1) ①を満たすための条件は x≧0 におけるf(x) の増減表は右のよう になる。 ① を満たすための条件は したがって a>0 これはα<0に適さない。 [2] 2a=0 すなわち α = 0 のとき f'(x)=3x2≧0, f(x)は常に単調に増加する。 f(0) = 4a>0 4a>0 よって a>0 [ [3] 20 すなわちa>0のとき x≧0 におけるf(x) の増減 表は右のようになる。 ①を満たすための条件は -4a³+4a>0 これはα=0 に適さない。 20 f'(x) f(x) 4a -4a(a+1)(a-1)>0 a(a+1)(a-1) <0 a<-1,0<a<1 ゆえに よって これを解くと 0<a<1 a> 0 を満たすものは [1]~[3] から,求めるαの値の範囲は 2a<0 x 0 f'(x) + f(x) 4a > 2a 0 -4a³+4a 0<a< 1 1 /1 NJ 2a0x + 2a=0 242x-x 16 がx≧0 に対して常に成り立つ - -1 [注意] 左の解答では, [1] 2a<0, [2] 2a=0, [3] 2a>0 の3つの場合に 分けているが, [1] と[2] を まとめ, 2a≦0, 2a>0 の場 合に分けてもよい。 なぜなら, 2a≦0のとき, x≧0では f'(x)≧0 であるから, x≧0でf(x) は 単調に増加する。 ゆえに,x≧0 での最小値は f(0) =4a である。 実際に左 の解答 [1] と [2] を見てみ ると,同じことを考えている のがわかる。 + a (a+1)(a-1)の符号 0 基本220 < a>0のとき a(a+1)>0 0<2a 02ax ゆえに a-1 <0 としてもよい。 1 a 343 638 関連発展問題 6章

回答募集中 回答数: 0