学年

教科

質問の種類

数学 高校生

数学cについてです (3)番です 見にくいですが、解説の下線部までは求められたのですが、直線AB の式がどこから来たのかがわかりません どのように求めるのでしょうか

図のように ry 平面上に点A(a, 0) B(0, 6) をとり, 線分ABを T1-t:tの比に内分する点をPとする. ただし, a≧0,6≧0,0<<1 であり線分ABの長さは常に1とする. (1) 点Pの座標およびy座標をα と tで表せ (2)点A0≦a≦1の範囲で動くとき,点Pはどのような曲線上を動くか. (3)(2)で求めた曲線上の点P における接線が,直線ABに一致するとき, との関係を求めよ.また,この関係を満たしながらt が 0<t<1の範囲 で動くとき, 接点はどのような曲線上を動くか. 2 b B3 O 2 P 1-t (3) a X (名古屋市立大薬一中 / 後半省略) アステロイドの性質 アステロイド (x3+y3=1; 媒介変数表示はx=cos 0, y=sin30) は, 長さ 1の線分がx軸,y軸上に両端点がある状態で動くときに通過する領域の境界にあらわれる. 例題を解 くと,(2)が楕円,(3)後半の曲線がアステロイドになり,両者は接する(接点は(3) 前半で求めたも の傍注の図参照). 演習問題も同じ図になるが, ABの通過領域を求める計算をやってみよう. 12 1-02= y 解答圜 (1)AB=1より6=√1-a2 であるから,P(ta, (1-t)/1-a²) YA (BB (2)=ta, y=(1-t) 1-α からαを消去すると, (0-1)+( P 2 y² 2 + -=1 0-2- 1-t t² (1-t)2 1-t 抹香 y2 (3)楕円 + +2 (1-t)2 =1上のP(ta, (1-t) √1-α2) における接線は, t 1-t -S) 1- ta (1-t)√1-a2 a y = 1 すなわち -x+ (1-t)2 t √1-a2 1-t -y=1である. 楕円の接線の公式. I 一方, 直線AB は y + =1だから, 両者が一致するとき, (+) a √1-a2 AO a 1 1-a2 -=- かつ : a=√t ta 1-t √1-a2 a=√f のとき,P(x,y)=(t√t, (1-t)√1-t) となるから, 3 3 x=tz,y=(1-t) 2 23 を消して,y=(1-x)2 2 2 ∴. x3+y=1 (+)+s ←第2式からは1-4²=1-t ■(2)と(3) を重ねて描くと YA 1 2 -SD-S 1-t 2 -x³+y³= 3=1 P(+², (1-+)²) A 4 演題 (解答は p.90) 0 t 1 IC

未解決 回答数: 0
生物 高校生

5番が正しい理由がさっぱわからないので教えてください

10000 206 出典:立行政法人統計センタ 1400 SSDSE-C-2021により作 の階級に含まれる。 また、四分位範囲として 47 226 0000円以上 22000円未満 000円以上 28000円未満 28 (Coo 29500 牛肉の年間支出金額 (2018年~2020年の平均値) 1500 34000 40000 (円) (円) 畿 (7市) 中国・四国 (9市), 九州 沖縄 (8市) の6つの地域に分けたときの箱ひげ図である。 のデータについて 47 市を北海道・東北 (7市) 関東 (7市) 中部 (9市) 近 40000- 38000- 36000- 34000- 32000- 30000- 28000- 26000- 24000- 22000- 20000- 18000- 16000 14000- 28000 12000- 10000- 北海道 ・東北 関東 中部 近畿 中国 九州 ・四国 ・沖縄 図2/牛肉の地域別年間支出金額 (2018年~2020年の平均値) (出典: 独立行政法人統計センターSSDSE-C-2021により作成) と計量 +cos 150° tan 30° √3 =0 2)+(cos0-√2 sin 0 ) cos0 + 2 cos' 20-2√2 sin 0 cos 0+2 sin² 3 sin0 0 であるから 26 データの 分析。 (2) 図1と図2から読み取れることとして,次の①~⑤のうち、正しいものは と ウ 本気である。 なお、各市の年間支出金額はすべて異なる。 H オ の解答群 (解答の順序は問わない。) 29500 ¥7500 15000 20 26500 14500 13000 - 2650 145 29500 -14500 ウ 15000 =2√6 30°-0) ア | の階級は、6つの地域の市をそれぞれ1つ以上含む。 6つの地域の中央値のうち、図1のデータの中央値に最も近いのは関東である。 6つの地域について、どの地域の四分位範囲も、図1のデータの四分位範囲より小さい。 近畿は100g当たりの牛肉の価格が他の地域よりも高い。 近畿で30000円未満の市は1つである。 16000円未満の市のうち, ちょうど半分が北海道・東北の市である。 6 1+2/6 り (配点 10 ) AB in C CA: AE

回答募集中 回答数: 0
数学 高校生

数IIの三角関数です。 (1)から、途中式なども含めた詳しい解説お願いしたいです… よろしくお願いします🙇🏻‍♀️

0... (*) を考える。 cos >0 を ウ πである。 実戦問題 73 三角関数を含む方程式・不等式 0002を満たす定数とし,xの2次方程式 x2+2(1-cosd)x + 3-sin'0-2sin20-2sin (1) 方程式 (*) が異なる2つの実数解 α, β をもつとき, 0は不等式 2sin20+ ア sine π オ キ 満たす。このことから, 0 の値の範囲を求めると, <B< π. <日< I ク ケ コ さらに6が鋭角のとき, 方程式 (*)のx= sin0 以外の解はx= (2) x=sin が方程式 (*) の解となるような角0は全部でサ 個ある。 [シス + v セ である。 答 (1)xの2次方程式 f(x) = 0 が異なる2つの実数解をもつとき,判別 式をDとすると D> 0 = =(1-cosl)-(3-sin'0-2sin20-2sin0) =2sin20+2sin-2cos0+ (sin'0+cos20)-2 = 2sin20+ 2sin0-2cos0-1 =4sincos0+ 2sin02cos0-1= (2sin0-1) (2cos+1) (2sin-1)(2cos8+1)>0 0≦02πの範囲に注意して (i) sind> かつ cost-1/2 のとき 2 Key 1 sin0 > 12 より cose > 1/23より 0≤0<,<<2 よって,この共通部分は << (ii) sine< 12 1 かつ cose<! のとき 2 Key sin<1 058< >*<0<2x π 5 6'6 2 cos<- より <日< π 2 4 3 118 sin20=2sin Acoso AB> 0⇔ A>O {A<0 または [B>0 \B<0 1 sin0 > cos>- <2π sin< よって、この共通部分は8/1/20 (i), (ii) より << 6 2 3 5 π、 << 6 (2) x = sinが方程式 (*) の解であるとき sin20+2(1-cos) sin0+3-sin20-2sin20-2sinQ= 0 整理すると, 3(sin20-1)=0より sin20=1 12 1-2 y cose<- 1x 0 x 20 の値のとり得る範囲に注意 0204πの範囲で 20= 5 π 2' 2 よって、条件を満たす 0 は 0 = π 5 4'4 する。 の2個。 方程式 (*) は さらにが鋭角のとき,=1/4であるから 4 x²+(2-√/2)x+1/2(1-2√2) = 0 左辺を因数分解して = 0 方程式(*)はx=sin = 1/12 T 1 π 1 -4+/2 よって, x= sin- 以外の解はx= -2= √√2 √2 2 を解にもつことがわかってい あるから,因数分解する。 攻略のカギ! Key 1 三角関数を含む方程式・不等式は, 単位円を利用せよ

回答募集中 回答数: 0
英語 高校生

この答えを教えて頂けると嬉しいです。 手間だと思うのですがよろしくお願いします🙇

be 使わ EXERCISES 助動詞② (must / should) さ A 1 日本語に合うように,( )に適語を入れなさい。 (1) 私は読書感想文を書かないといけない。st air diiw vqqnd od Jeum rodiond yM O I ( )( )( )abook report. of smod ad bluode fesug w (2) 私たちはお互いを理解しなければならない。 We()() each other. (3) 私は昨日, 消しゴムを買わなければならなかった I (a) (4) (+) an eraser yesterday. of svad of ever! (4) 私は今度の土曜日, 会議に出なければならないだろう。wensingh sub od of and eid I ( ) ( ) ( )) attend the meeting next Saturday. (5) あなたは自分の楽器を持ってくる必要はない。 You don't()( 100 your own instrument. 2 ( )内から適切な語句を選びなさい。 B (1) If you feel sick, you (should/ ought ) go to the nurse's room. (2) Jack (ought to not/ ought not to) smoke. 「いない」 [10-10 85-1 (3) You (had better not / had not better) miss that class. (4) We (ought / should) to tell the truth to everyone. 3 与えられた状況に合うように( )内の語句を並べかえ, 全文を書きなさい。 ただし, 不要な語 句が1つずつ含まれています。 B 909-seat owens of ald は (1)状況 仕事に忙殺され, 体調を崩した私。 お見舞いに来た同僚が言った。 You (take / until / it / feeling / easy / should/ you're / had) better. buda) (2)状況 大事な試合でチームが負けてしまった。 するとコーチがあなたたちを呼びだしてこう言いました。 (blamed / not / you/be/should/ ought to) + sver bluorle\fzum S81-021.09 (3)状況 今日は, 家族旅行の予定でしたが, 台風が接近中。次第に風雨が強まってきたので・・・。 We (not/ought to / had better / out/in/go) this storm.pl avsd jeum H (4)状況 友人の言うことに何でも従っているリョウタにあなたはこう言いました。こ (everything/follow/to/ had / not/you/ought) he says. Dworal leum 11 14 [ ]内の語を参考にして ~, に自由に語句を入れ, オリジナルの英文をつくりなさい。 solybe uoy neat sved of duo ISAB (1)~(人)は明日・・・する必要はない。 [tomorrow] than on go yabinoda), (2)〜(人) は・・・しないといけない。 [ better] [n ton triguojy'nbluode uoys 35

未解決 回答数: 1