学年

教科

質問の種類

数学 高校生

答えを見てもよく理解できません( ; ; )教えてください🙇‍♂️

●●78 例題 5 正四角錐の側面に接する半球 右の図の正四角錐 A-BCDE におい て, AB=AC=AD=AE=3√3, BC=CD=DE=EB=6であり,内部に 半球がある。 この半球の底面は正方形 BCDE 上にあり, 球面は正四角錐の4 つの側面と接している。 このとき、 半球の半径を求めよ。 い D 解答 辺 BC, DE の中点をそれぞれM, N, 球の中心を0とする。 △ABM において AM=√√(3/3)2-3°=√18=3√2 考え方) 辺BC, DE の中点と点 を通る平面で切った断食 で考える。 3√√2 r r 6 △ABCの辺BC, CA, AF このとき, DEF の重心 中線AD と線分 E 明せよ。 とする。 CE=EA 中点連結定理から AF//ED また,BF = FA. 中点連結定理か AE//FD ① ② より 対 よってEP= 同様に,中線 それぞれ Q したがって, 交点となり, すなわち, BC = 6 より BM=CM=3 作る 3点A, M, Nを通る平面で切った断面で考える。 M 3 0 MN=CD=6より MO=NO=3 △AMO において AO=√(3/2)^2=√9=3 △AMN の面積を2通りに表すと TV=29 1/2(AM+AN)=1/2MNAO 中 が成り立つ。すなわち (3√/2+3√2)=-6.3 よって r= 3√2 2 (問題 5 正四角錐 A-BCDE の高さは12, 底面の正方形の1辺の長さは10であ る。この内部にある球が正四角錐のすべての面に接しているとき,球 A の半径を求めよ。 AH=12.ALL MH.MH=NH MN=CD=10 MH=NH=5 AM=AN=123+52=5169=13 1/12 (AM+MN+AN)=1/2MN.AH 1/2(13+10+13)=1/2x10.12 rs 3 M&HS N サ B 問題6 ABCの内心をIc それぞれP,Q,R とを証明せよ。

未解決 回答数: 1
物理 高校生

この問題の問4、問5が分かりません。 答えと解説、両方ともお願いしたいです。

2 軽くてなめらかに動くことのできるピストンの付いたシリンダーを考える。 以下の問いに答え よ。 なお、解答用紙には答えに至る説明あるいは計算過程も記述せよ。 ( 60点 ) 問1.はじめはピストンが固定され、図のようにシリンダー内が薄い仕切り板により体積 1/3V[m²) および 1/2 V[m])に区切られているものとする。 体積 1/32V[m]の部分には温度 [K] 圧力 3P [Pa〕の単原子分子理想気体が入れられており,もう一方の部分は真空状態になっている。 この状態から内部の気体がピストンの外に出ないように仕切り板を静かに取り外し、 十分時 間が経った後の状態を状態 A とする。 状態 A の気体の圧力を求め, V, TP のうち必要な ものを用いて表せ。なお、この過程においてシリンダー内の気体は断熱状態に置かれている ものとする。 3P'v=Q+ 3 13 3 3P. T 真空 E PV 状態 Aの気体に対して,ピストンを固定したまま熱量 Q, [J] を加えたところ、 気体の圧力が上 昇した。 この状態を状態Bとする。 次に, 状態Bからピストンの固定を外し、 気体の温度を一定 に保ったまま, 気体の体積が2V[m²〕になるまでゆっくりと膨張させた。 気体が膨張した後の状 態を状態C とする。 ここで状態Cの圧力は状態 Aの圧力よりも大きかった。 その後,状態Cか ら気体の体積を保ったまま、 気体の圧力を状態 Aと同じにした。 この状態を状態Dとする。 最 後に,状態Dから気体の圧力を保ったまま、 気体の体積を状態 Aの体積まで圧縮した。 問2. 状態 B の気体の圧力を求め, V, P, Q」 を用いて表せ。 問3. 状態Cの気体の圧力を求め, V, P, Q を用いて表せ。 問4. A→B→C→D→Aの一連の過程を熱機関のサイクルとみなしたとき,このサイクルに おいて気体が外部に対して正負にかかわらずゼロではない仕事をした過程はどこか。 対応す る過程を下記の(a)~(d)から全て選択し, 解答欄の所定の場所に記入せよ。 また, 過程B→C において気体に加えられた熱量を Q2[J]としたとき, サイクル全体で気体が外部にした仕事 の総和を求め,V, P. Q2 を用いて表せ。 (a) A-B (b) B-C +Q 2V (c) C-D (d) D-A 7. 問5. 問4のサイクルにおける熱効率を求め, V, P. Q, Q2 を用いて表せ。 ご PV @a,+PV. 3 2 Q,+P EV

回答募集中 回答数: 0