学年

教科

質問の種類

数学 高校生

135番なんですけど、回答の5行目までは分かるのですが、それ以降何言ってるかわかりません。あと回答の黒塗りされている場所の3行目以降も何言ってるかわかりません。

134 組立除法を用いて, 次の多項式Aを多項式Bで割った商と余りを求めよ。 複数になっているも (1) A=4x3+x2+6x-5, B=x-1 (2) A=3x3-x2+3, B= x +2 (3) A=2x-7x2+8x-8, B=2x-3 =+6 と30余る。 発展問題 135 多項式P(x) を (x-1)2で割ると余りが 4x-5, x+2で割ると余りが4 ヒント である。このとき, P(x) を (x-1)(x+2) で割ったときの余りを求めよ。 133 (1) x=√2-1 から, x+1=√2 の両辺を2乗して整理すると x2+2x-1=0 3 2 134 (3) x- で割り、割り算の等式を作る。 135 P(x) を (x-1)(x+2) で割ったときの余りを、更に (x-1)2で割る。 ゆえに 商x-2x+ 1, 余り -5 135 P(x)= を x+2 erとする Q₁(x される。 ①に代 *)=(x-1 =(x- ここで,P(x) るから PC 針■■ 等式P(x) = (x-1)(x+2)Q(x) +R (x) を作る。 (R(x)は ax2+bx+c と表される) (x-1)(x+2)Q(x) は (x-1)2で割り切れるか ら, R(x) を (x-1)2で割ったときの余りは, P(x) を (x-1)2で割ったときの余り (=4x-5) と一致する。 よって R(x)=ax2+bx+c =a(x-1)2+4x-5 あとは, αの値を求める。 P(x) を (x-1)(x+2) で割ったときの商を Q(x) とする。 このときの余りは、2次以下の多項式または0で あるから, ax2+bx+c (a, b, cは定数) とおけ る。 よってP(x)=(x-1)(x+2)Q(x)+ax²+bx+c 更に,P(x) を (x-1)で割ると余りが4x-5で あるから P(x)=(x-1)(x+2)Q(x)+α(x-1)+4x-5 ...... ① と表される。 P(x) を x+2で割ると余りが-4であるから P(-2) =-4 また, ① から P(-2)=9a-13 よって 9a-13=-4 ゆえに a=1 したがって, 求める余りは (x-1)2+4x-5 すなわち x2+2x-4 別解指針■■■ 等式P(x)=(x-1)2Q(x)+4x-5を作る。 Q(x)をx+2で割ったときの余りをとする と,Q」(x)=(x+2)Q2(x) + r と表される。 よって P(x)=(x-1)^{(x+2)Q2(x)+r+4x-5 =(x-1)(x+2)Q2(x)+(x-1)'r+4x-5 ゆえに、求める余りは(x-1)+4x5 あとは, rの値を求める。 また、②から よって gr これを② P(x)=(x- =(x- ゆえに、 求め 136 (1) 移項 左辺を因数分 よって ゆえに x x (2) 左辺を因数 (3 よって 3 ゆえに (3)左辺を因 よって ゆえに x 2 (4) 左辺を因 よって = ゆえに (5) 左辺を因 よって ゆえに 137 (1) P(= P よって, P を因数分解 P(x) =0 カ したがって (2) P(x)=1

回答募集中 回答数: 0
生物 高校生

(1)と(2)がわかりません 解説お願いします🙇‍♀️

154. DNA の複製に関する次の実験について,以下の問いに答えよ。 適切な培地を入れたシャーレで, 24時間に1回分裂しているヒト由来の培養細胞がある。こ のシャーレに,蛍光を発するヌクレオチドを添加して実験を行った。 ※蛍光顕微鏡を用いて観察すると,このヌクレオチドが取りこまれた部分が,蛍光を発するのが 観察できる。 【実験】 蛍光を発するヌクレオチドを培地に加え, 1時間細胞に取りこませた後,蛍光顕微鏡 を用いて観察したところ, 蛍光を検出できる核をもつ細胞が見られた。 【実験 2】 蛍光を発するヌクレオチドを培地に加え, 3時間細胞に取りこませた。その後,培地 を洗い流し,蛍光を発するヌクレオチドを含まない 培地を新たに加えてさらに10時間培養を続けた。そ の結果, 蛍光顕微鏡を用いて観察すると, 蛍光を検 出できる分裂期中期の染色体が見られた。 (1) 右図は分裂している細胞における, 細胞当たりの DNA量の変化を示したものである。下線部の細胞が, 蛍光を発するヌクレオチドを取りこんだのは,グラ フの①~④のどの時期か ヒガイは199 [3] 1 細胞当たりのDNA量 (相対値) 3 ① ② 0 00 13 ④ 6 9 12 15 18 21 24 27 30 (時間) 経過時間 巻末問題 (2) 実験2の蛍光を検出できる染色体では,図Aで示す分裂期中期の染色体のどの部分が蛍光を 発しているか。 次の中から最も適当なものを1つ選べ。 A ① ② ③ ④ ⑤ 蛍光を発している部分 蛍光を発していない部分 [

回答募集中 回答数: 0
数学 高校生

2枚目画像のR(S=2)のところで、確率を求めている式の真ん中の3!/2!が何をしているのかがわかりません。教えてください。

第3問 場合の数 確率 【解説】 以下では, 東方向への移動を 南方向への移動を 西方向への移動を 北方向への移動を↑ とし,点Aから出発する経路と4種類の矢印の並べ方を対応さ せて考える.例えば,→→→ という並べ方に対しては次図の (a)の経路が対応し、という並べ方に対しては次図 の (b) の経路が対応する。 逆に,点Aから出発する経路を1つ定め ると,それに対応する矢印の並べ方が1つ得られる。 (コ) B B 「よりも左側に↓があるものの個数を考える。 まず、 、 、 の並べ方が, -=35 (通り) あり、その各々に対して4個の□への 1, 1, 1, ↓の配置の、 仕方が 4, 1, 1, ↑ *1, 1, 1. t 1. 1. L. 1 の3通りずつあるから, 北方向への移動を3回, 南方向への移動 を1回 東方向への移動を3回行うような移動の仕方の数は、 例えば、4個のと3の一の並べ 35通りのうちの1つとして。 ローローロー 35x3 105 (通り)。 四 南北の4枚のカードから無作為に1枚を引く 2 がある。 このとき、条件を満たすように 3の1と1個のを口へと配置す ることで. A (b) (1) 点Aを出発し, 5回の移動後に点Bにいる移動の仕方の数は 1. 1. →,,の並べ方の個数であるから, 5! = 10 (通り)。 2!3! 同じものを含む順列 (2) 点Aを出発し、7回の移動後に点Bにいる移動の仕方のうち、 点Cを通るものは、点Aから点Cに移動するまでに2回, 点 から点Bに移動するまでに5回の移動をすることになる。 点Aから点Cまでの移動の仕方の数は1の並べ方の個数 であるから. のもののうち、αが、 . が ...... あると これらのものを並べてでき 順列の総数は、 (通り) mimi (n=m₁+m+ +m₂) 2!=2 (通り)。 である。 この各々に対して,点Cから点Bまでの移動の仕方の数は 「. の並べ方の個数だけあるから, =5 (通り)。 よって, 点Aを出発し、7回の移動後に点Bにいる移動の仕方 のうち,点を通るものの数は, (通り). また北方向への移動を2回, 西方向への移動を1回 東方向 への移動を4回行うような移動の仕方の数は 1. 1.←→,→ →の並べ方の個数であるから, とき 引き力は4通りあり、これらはすべて同様に確からしい。 よって,, . 1.の移動が起こる確率はすべてである。 ただし、試行を行った点において、道がない方向のカードを引い た場合は移動ではなく Stay が起こる。 (3)点Aを出発し、5回の試行後に点Bにいるのは、 が2回, が3回起こる場合である。 (1)より,その確率は、 -1-1-11 [1] →1→1→ 11-1-1- の3通りの並べ方が得られる。 (4)( (4) 点Aを出発し、7回の試行後に点Bにいるような事のうち. Stay がちょうどk 回 k=0.2) だけ起こる事象をR(S=k) と す。 まず、R(S-2)のうち, D, を過るものについて考える. このとき、最初の2回の試行でDに到達する必要があるから、 が2回起こればよく、その確率は、 Stay がちょうど1回だけ起こると 残りの6回の試行では、7回の行に にいるように移動することができ ない。 また, Stay が3回以上起こると 残りの4回以下の試行ではBに することができない。 (+ さらに、残りの5回の試行で その事は、 が起これば試行でD, からBへ到するに (+)(4)-10(4) よって、 R (S2) かつ 「D, を通る」 確率は, 8. 105 (通り) ... 次に,R(S-2)のうち、D, を通らずにDを通るものについ て考える。 次に,f, f, f. 4.,,の並べ方のうち、3個目の このとき、最初の3回の試行でD, を通らずに D2 に到達する必 25- はが3回起こる必要があり、残りの2 回でStay. つまり「がない」が起 こればよい D, D, D, B

回答募集中 回答数: 0
日本史 高校生

これらのページの答えを教えてください。できればこのワークの全ての答えの写真をください。

第 章 日本文化のあけぼの 2 おもな打製石器 打製石斧、 おもに木製棒の先端に取り付けて狩猟用の石槍に 使用したナイフ形石器や尖頭器、 旧石器時代の末には (3)が広まる Y Point 中国東北部やシベリアでは、 日本に先がけて細石器の著しい発達がみら 3 1 文化の始まり 5 日本列島と日本人 p.6~ 1 人類の誕生 (1) 人類誕生 (約700万年前) 猿人(アウストラロピテクスなど)→人→旧人(ネアンデルタール人など) →新人(ホモサピエンス) と変遷 Point 現代人は新人に属す。 (2) 使用道具による時代区分 (1)のみの使用を旧石器時代、 ( 2 )が加わる時代を新石器時代と 呼称 世界史では、石器時代以降→青銅器時代→鉄器時代と続く (3) 地質学の新生代第四紀を約1万年前で区分、氷河時代に当たり氷期と簡 氷期が繰り返された ( 3 )と、それ(最終氷期)以後を( 4 )と呼称 2 日本列島への渡来 こうしんせい (1) 更新世の氷期、 大幅に海面下降し一時大陸と陸続き →ナウマンゾウ等が日本列島に渡来 (2) 最終氷期にほぼ大陸と陸続き →日本列島に人類が渡来 (推定=約3万8000年前) (3) 日本列島における更新世の化石人骨の発見 またじん みなとがわじん やましたちょう どうじん しら 静岡県の浜北人 ( 5 )県の港川人 山下町第一洞人 白保竿根田原 a どうじん 洞人など あかし かんしんせい b 上記はすべて「新人」 段階 *兵庫県 「明石人」は更新世 or 完新世で諸説 じょうもん (4) 日本人の原型=アジア大陸の人々の子孫→ 縄文人+弥生時代以降の渡来人 との混血(縄文人の遺伝子→アイヌの人々や沖縄など南西諸島の人々に強く継 承) ( Point 縄文人の遺伝子を強く継承した人々が、 日本列島の北と南(北海道と南 西諸島)に多く認められる点と、その後の弥生文化の列島での広がりと の関連性に注目。 旧石器人の生活 p.8~ 1 列島と旧石器時代 あいざわただひ しらた (1) 1949年、 相沢忠洋が群馬県 ( 1 ) ( 2 ) (更新世の地層)から打製石 器を発見以後、各地で更新世の地層から石器の発見があいつぐ (北海道白滝、 長野県野尻湖など) (2) 人々は大型動物を追って移動、 洞穴やテント式小屋を住まいに狩猟採集の 生活 れる。 縄文文化の成立 p.8~ 1 自然環境の変化 (1) 約1万年余り前、 氷期が終了して気候が温暖化、 地質学では更新世から (1)へ: 海面上昇し、 現在の日本列島がほぼ成立→縄文文化へ しょうとうじゃりん a 植生が変化して東日本で落葉広葉樹林、 西日本で 照葉樹林広がる →木の実の採集や根菜類の食料化 b 大型動物が絶滅→動きの速いシカイノシシなど、 中 小動物が狩猟対象に (2) 縄文文化のおもな特徴 b 打製石器に加え、 ( 3 ) が出現 a おもに食料を煮るための(2)が出現 C 俊敏な中小動物を狩るための(4)が出現 そうそう 2 縄文土器 草創期の土器は、世界最古の土器の1つ (1) 縄文時代を土器変化で区分: 草創期→早期→前期 中期 後期 晩期 (2) 特徴: 低温で焼かれた厚手で黒褐色の土器 つめがた (3)文様 草創期の無文 隆起線文 爪形文からしだいに細目の文様が増加 (4) 形状: 中期に火炎土器、 後期には多様化、 晩期には東日 本一帯で精巧な亀ヶ岡式土器が出現。 逆に西日本 では器種が減少へ * 年代測定には、放射性炭素14年代法や年輪年代法など 縄文人の生活と信仰 p.9~ 亀ヶ岡式土器 1 植物性食料の採集→管理、増殖、 栽培へ (1) 木の実 根菜類の採集、 ダイズなどマメ類、 エゴマなどの栽培 (2) 土掘り用や食料加工用の打製石器、 磨製石器が出現 (打製石器との併用) いしぐわ いしざら けいと せ →打製石斧 (石鍬) 石皿、 磨石、石匙 (=動物の皮なめし用)など すとう (3) 縄文晩期に水稲農耕の可能性を示唆 佐賀県菜畑遺跡や福岡県板付遺跡など ぎょう 2 狩猟漁労による動物性食料の確保 (1) 狩猟:イヌを狩りにともない、(1)(先に 鉄)や槍でニホンシカイノシシなどを捕獲 からかいふわらかんのんとう J Point 千葉県の加曽利貝塚や藤原観音堂貝塚など各 地でイヌを丁寧に埋葬した例が発見され、 イ ヌを狩りの重要なパートナーとしていたこと が推察される。 イヌの埋葬 (藤原観音堂貝塚) 6 第1章 日本文化のあけぼの 3 2 3 1 文化の始まり

回答募集中 回答数: 0
生物 高校生

まだ学校で習っておらず分子進化のやり方がわかりません。この問題はどのように考えれば良いのか教えてください!お願いします。

基本例題 6 分子進化 図は,表のアミノ酸の違いの数からA~Dの系統関係を推定し て描いた系統樹である。XからA~Dまでの進化的距離は等しく, 化石を用いた研究から, BとC が 2.0 × 107 年前に分岐したことが わかっている。次の値を計算し,有効数字2桁で答えよ。 解説動画 全口 生物種 A B. C D A 38 表は、4種の生物種 A~D で共通して存在するタンパク質Pのアミノ 酸配列を比較し, それぞれの間で異なっている アミノ酸の数を示したものである。 この違いは, A~Dの共通祖先Xがもっていたタンパク質P の遺伝子が長い時間を経過する間に変化し,そ の結果,アミノ酸配列にも違いが生じたことを 示している。 B C3688 34 19 17 C D B (1) このタンパク質Pを構成するアミノ酸1つが変化するのにかか る時間は何年か。 C (2) A~D が共通祖先 X から分岐したのは今から何年前と推定されるか。 指針 (1) アミノ酸が異なっている数と分岐後の年数が比例すると考える。 BとCのアミノ 酸の違いが8つなので, 2.0 × 10年前に分岐後,それぞれ4つずつ変化したと考 えると1つ変化するのにかかる時間は, (2.0 × 107 ) ÷ 4 = 0.5 × 107 = 5.0 × 10° (2) 表より, AとB・C・D の間では平均 (38+36 +34) + 3 = 36か所違う。 よって, 分岐後それぞれ36÷2=18か所ずつ変化したと考えられ, (1) より, 1つ変化する のに 5.0 × 10° 年かかる。 したがって, 18個では 5.0 × 10° × 18 = 9.0 x 10 解答 (1) 5.0 × 10°年 (2)90 × 10年前

回答募集中 回答数: 0
数学 高校生

答えがこれであっているか教えてください🙇

51 (木) まずは小問集合。 大事な問題は繰り返しやって、 自信をつけていきましょう。 次の を正しくうめよ。 (1) 不等式3(x-2) <2x-5…① の解は(ア)である。 また,不等式①を満たすことは,x<0であるための(イ)。 (イ)に当てはまるものを,下の①~④のうちから1つ選べ。 ① 必要十分条件である ② 必要条件であるが, 十分条件ではない 十分条件であるが, 必要条件ではない ④ 必要条件でも十分条件でもない (2) 次のデータは、あるクラス10人の数学の小テストである。 7,5,8,6,7,8,10,4,3,9 このとき,中央値は (ウ) であり,第1四分位数は(エ)である。 (3)男子2人、女子5人, 計7人の生徒がいる。 この中から委員3人を選ぶ 方法は、全部で (オ) 通りあり、このうち少なくとも1人は男子である 選び方は、全部で (カ) 通りある。 (4) (2x-y) の展開式におけるxyの係数は (キ)である。 また、 (x+2y-3z)の展開式における xy'z の係数は (ク)である。 (1) 3(x-2)<2x-5 3xc-62x-5 20 6.5.4×80303 (4)6G(2x)(-\パー(54 xC1(P) ③- ③ -(1) キ (2) 1,3,4,5,6,7,7,9,10 中央値 6.5-) # 第1四分位数4(土) 4. -1609343 プリシの係数は160(t) また、{(x+2%)-3/24の展開式における 窓の係数は、 4C1=4 (x+2g)におけるxyの係数は 3C2.2°=3×4 (3)7C3 7.65 =35通り(オ) また、少なくとも1人は男子なのは 38.5 6C2 15通り(カ) 入り サ サ =12. (xy2zの係数は4×12=2817

回答募集中 回答数: 0