学年

教科

質問の種類

数学 高校生

(2)について質問です。 赤線部のように分かるのは何故ですか?🙏

152 基礎問 96 接線の本数 曲線 C:y=x-x 上の点をT(t, ピーt) とする. (1)点Tにおける接線の方程式を求めよ. (2)点A(a,b) を通る接線が2本あるとき,a,bのみたす関係式 を求めよ.ただし,a>0, b≠α-a とする. (3)(2)のとき、2本の接線が直交するようなa, 6の値を求めよ. 精講 (2) 3次関数のグラフに引ける接線の本数は,接点の個数と一致し ます. だから、(1)の接線にA(a, b) を代入してできるtの3次方 程式が異なる2つの実数解をもつ条件を考えますが、このときの 考え方は 95 注で学習済みです。 (3) 未知数が2つあるので, 等式を2つ用意します。 1つは(2)で求めてあるので, あと1つですが, それが 「接線が直交する」 を式にしたものです.接線の傾きは接点における微分係数(34) ですから、 2つの接点における微分係数の積=-1 と考えて式を作ります. 解答 (1) f(x)=x-x とおくと, f'(x)=3x²-1 よって, Tにおける接線は, y-(t-t)=(3t-1)(x-t) 186 y=(3t2-1)x-2t3 (2)(1) の接線は A(a, b) を通るので b=(3t2-1)a-2t3 :. 2t-3at2+a+b= 0 …………(*) (*) が異なる2つの実数解をもつので, g(t)=2t-3at2+α+b とおくとき, y=g(t) のグラフが,極大値, 極小値をもち, (極大値)×(極小値) =0であればよい.95 注 g'(t)=6t2-6at=6t(t-a) g'(t)=0 を解くと, t=0, t=α だから y=x-x| (t,t³-t) A(a,b)

解決済み 回答数: 1